注册 登录 进入教材巡展
#
  • #

出版时间:2012-03

出版社:机械工业出版社

以下为《数据挖掘:概念与技术(英文版)(第3版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 机械工业出版社
  • 9787111374312
  • 3版
  • 319040
  • 44219986-5
  • 平装
  • 16开
  • 2012-03
  • 1098
  • 732
  • 工学
  • 计算机科学与技术
  • 计算机类
  • 本科
作者简介
韩家炜, 伊利诺伊大学厄巴纳-尚佩恩分校计算机科学系Abel Bliss教授。由于在数据挖掘和数据库系统领域卓有成效的研究工作,他曾多次获得各种荣誉和奖励,其中包括2004年ACM SIGKDD颁发的很好创新奖,2005年IEEE Computer Society 颁发的技术成就奖,2009年IEEE颁发的W. Wallace McDowell奖。他是ACM和IEEE Fellow,同时还是《ACM Transactions on Knowledge Discovery from Data》杂志的主编(2006-2011),以及《IEEE Transactions on Knowledge and Data Engineering》和《Data Mining and Knowledge Discovery》杂志的编委会成员。

  Micheline Kamber 拥有加拿大康考迪亚大学计算机科学硕士学位,她是NSERC Scholar,现在加拿大麦吉尔大学、西蒙-弗雷泽大学及瑞士从事研究工作。

  Jian Pei(裴健), 目前是加拿大西蒙-弗雷泽大学计算机学院副教授。2002年,他在Jia wei Han教授的指导下获得西蒙-弗雷泽大学博士学位。
查看全部
内容简介
当代商业和科学领域大量激增的数据量要求我们采用更加复杂和精细的工具来进行数据分析、处理和挖掘尽管近年来数据挖掘技术取得的长足进展使得我们广泛收集数据越来越容易,但技术的发展依然难以匹配爆炸性的数据增长以及随之而来的大量数据处理需求,因此我们比以往更加迫切地需要新技术和自动化工具来帮助我们将这些数据转换为有用的信息和知识

  《经曲原版书库·数据挖掘:概念与技术(英文版·第3版)》前版曾被KDnuggets的读者评选为受欢迎的数据挖掘专著,是一本可读性极好的教材它从数据库角度全面系统地介绍数据挖掘的概念、方法和技术以及技术研究进展,并重点关注近年来该领域重要和较新的课题--数据仓库和数据立方体技术,流数据挖掘,社会化网络挖掘,空间、多媒体和其他复杂数据挖掘每章都针对关键专题有单独的指导,提供很好算法,并对怎样将技术运用到实际工作中给出了经过实践检验的实用型规则如果你希望自己能秘练掌握和运用当今最有力的数据挖掘技术,那这本书正是你需要阅读和学习的宝贵资源本书是数据挖掘和知识发现领域声的所有教师、研究人员、开发人员和用户都必读的一本书。
目录

Foreword to Second Edition

Preface

Acknowledgments

About the Authors


Chapter1 Introduction

Why Data Mining?

Moving toward the Information Age

Data Mining as the Evolution of Information Technology

What Is Data Mining?

What Kinds of Data Can Be Mined?

Database Data

Data Warehouses

Transactional Data

Other Kinds of Data

What Kinds of Patterns Can Be Mined?

Class/Concept Description: Characterization and Discrimination

Mining Frequent Patterns, Associations, and Correlations

Classification and Regression for Predictive Analysis

Cluster Analysis

Outlier Analysis

Are All Patterns Interesting?

Which Technologies Are Used?

Statistics

Machine Learning

Database Systems and Data Warehouses

Information Retrieval

Which Kinds of Applications Are Targeted?

Business Intelligence

Web Search Engines

Major Issues in Data Mining

Mining Methodology

User Interaction

Efificiency and Scalability

Diversity of Database Types

Data Mining and Society

Summary

Exercises

Bibliographic Notes


Chapter 2 Getting to Know Your Data

Data Objects and Attribute Types

What Is an Attribute?

Nominal Attributes

Binary Attributes

Ordinal Attributes

Numeric Attributes

Discrete versus Continuous Attributes

Basic Statistical Descriptions of Data

Measuring the Central Tendency: Mean, Median, and Mode

Measuring the Dispersion of Data: Range, Quartiles, Variance,

Standard Deviation, and Interquartile Range

Graphic Displays of Basic Statistical Descriptions of Data

Data Visualization

PixeI-Oriented Visualization Techniques

Geometric Projection Visualization Techniques

Icon-Based Visualization Techniques

Hierarchical Visualization Techniques

Visualizing Complex Data and Relations

Measuring Data Similarity and Dissimilarity

Data Matrix versus Dissimilarity Matrix

Proximity Measures for Nominal Attributes

Proximity Measures for Binary Attributes

Dissimilarity of Numeric Data: Minkowski Distance

Proximity Measures for Ordinal Attributes

Dissimilarity for Attributes of Mixed Types

Cosine Similarity

Summary

Exercises

Bibliographic Notes

……

Chapter 3 Data Preprocessing

Chapter 4 Data Warehousing and Online Analytical Processin

Chapter 5 Data Cube Technology

Chapter 6 Mining Frequent Patterns, Associations, and Correlations: Basic Concepts and Methods

Chapter 7 Advanced Pattern Mining

Chapter 8 Classification: Basic Concepts

Chapter 9 Classification: Advanced Methods

Chapter 10 Cluster Analysis: Basic Concepts and I~ethods

Chapter 11 Advanced Cluster Analysis

Chapter 12 Outlier Detection

Chapter 13 Data Mining Trends and Research Frontiers

Bibliography

Index