注册 登录 进入教材巡展
#
  • #
  • #

出版时间:2020-04

出版社:高等教育出版社

以下为《代数几何中的相交理论引论(影印版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040534870
  • 1版
  • 296650
  • 46253888-5
  • 精装
  • 16开
  • 2020-04
  • 160
  • 100
  • 理学
  • 数学
  • 数学类
  • 研究生及以上
目录

 preface
 Chapter 1. Interseetions of Hypersurfaees
  1.1. Early history (Bezout, Poncelet)
  1.2. Class of a curve (Plüeker)
  1.3. Degree of a dual surface (Salmon)
  1.4. The problem of five conics
  1.5. Á dynamic formula (Severi, Lazarsfeld)
  1.6. Algebraie multiplicity, resultants
 Chapter 2. Multiplicity and Normal Cones
  2.1. Geometrie multiplicity
  2.2. Hubert polynomials
  2.3. Á refinement of Bezout 's theorem
  2.4. Samuel's intersection multiplicity
  2.5. Normal cones
  2.6. Deformation to the normal cone
  2.7. Intersection produets: a preview
 Chapter 3. Divisors and Rational Equivalence
  3.1. Homology and cohomology
  3.2. Divisors
  3.3. Rational equivalence
  3.4. Intersecting with divisors
  3.5. Applications
 Chapter 4. Chern Classes and Segre Classes
  4.1. Chern classes of vector bundles
  4.2. Segre classes of cones and subvarieties
  4.3. Intersection forumulas
 Chapter 5. Gysin Maps and Intersection Rings
  5.1. Gysin homomorphisms
  5.2. The intersection ring of a nonsingular variety
  5.3. Grassmannians and flag varieties
  5.4. Enumerating tangents
 Chapter 6. Degeneracy Loci
  6.1. Á degeneracy dass
  6.2. Schur polynomials
  6.3. The determinantal formula
  6.4. Symmetrie and skew-symmetric loci
 Chapter 7. Refinements
  7.1. Dynamic intersections
  7.2. Rationality of Solutions
  7.3. Residual intersections
  7.4. Multiple point formulas
 Chapter 8. Positivity
  8.1. Positivity of intersection produets
  8.2. Positive polynomials and degeneracy loci
  8.3. Intersection multiplicities
 Chapter 9. Riemann-Roch
  9.1. The Grothendieek-Riemann-Roeh theorem
  9.2. The singular case
 Chapter 10. Miscellany
  10.1. Topology
  10.2. Local complete intersection morphisms
  10.3. Contravariant and bivariant theories
  10.4. Serre's intersection multiplieity
 References
 Notes (1983-1995)