Riemann zeta函数讲义(影印版)
作者: H.Iwaniec
出版时间:2021-03
出版社:高等教育出版社
- 高等教育出版社
- 9787040556308
- 1版
- 369849
- 48265862-2
- 精装
- 16开
- 2021-03
- 210
- 136
- 数学类
- 研究生及以上
  前辅文
  Part 1. Classical Topics
   Chapter 1. Panorama of Arithmetic Functions
   Chapter 2. The Euler–Maclaurin Formula
   Chapter 3. Tchebyshev’s Prime Seeds
   Chapter 4. Elementary Prime Number Theorem
   Chapter 5. The Riemann Memoir
   Chapter 6. The Analytic Continuation
   Chapter 7. The Functional Equation
   Chapter 8. The Product Formula over the Zeros
   Chapter 9. The Asymptotic Formula for N(T)
   Chapter 10. The Asymptotic Formula for ψ(x)
   Chapter 11. The Zero-free Region and the PNT
   Chapter 12. Approximate Functional Equations
   Chapter 13. The Dirichlet Polynomials
   Chapter 14. Zeros off the Critical Line
   Chapter 15. Zeros on the Critical Line
  Part 2. The Critical Zeros after Levinson
   Chapter 16. Introduction
   Chapter 17. Detecting Critical Zeros
   Chapter 18. Conrey’s Construction
   Chapter 19. The Argument Variations
   Chapter 20. Attaching a Mollifier
   Chapter 21. The Littlewood Lemma
   Chapter 22. The Principal Inequality
   Chapter 23. Positive Proportion of the Critical Zeros
   Chapter 24. The First Moment of Dirichlet Polynomials
   Chapter 25. The Second Moment of Dirichlet Polynomials
   Chapter 26. The Diagonal Terms
   Chapter 27. The Off-diagonal Terms
   Chapter 28. Conclusion
   Chapter 29. Computations and the Optimal Mollifier
  Appendix A. Smooth Bump Functions
  Appendix B. The Gamma Function
  Bibliography
  Index
 
 
        
    
    
 
                        
                        
                    








