复杂网络引论——模型,结构与动力学(第2版,英文版)
作者: 陈关荣,汪小帆,李翔
出版时间:2015-01-13
出版社:高等教育出版社
- 高等教育出版社
- 9787040406054
- 1版
- 164991
- 46254655-7
- 精装
- 16开
- 2015-01-13
- 480
- 366
- 理学
- 系统科学
- TH111
- 信息、电子、计算机类
- 本科 研究生及以上
《Introduction to Complex Networks:Models, Structu》是为自然科学、数学和工程领域的研究生以及本科高年级学生拟写的一本入门书,可以作为一个学期教学使用的参考讲义,也可以作为科研参考书或自学读物。
《Introduction to Complex Networks:Models, Structu》力求正确和准确,但并不刻意采取十分严谨的写法,以期通俗易懂,侧重于主要思想和基本方法的介绍,仅提供启发性的数学支撑,希望具有初等微积分、线性代数和常微分方程的读者能够轻松地学习书中的主要内容。
《Introduction to Complex Networks:Models, Structu》分成两大部分:第一部分是基础理论,提供足够的背景材料和信息并附有适量的练习题,旨在让读者熟悉一些最基本的建模方法和分析技巧。第二部分是应用选题,包括复杂网络在几个代表性领域中的应用研究。这些章节彼此相对独立。最后一章是近年来比较活跃的几个前沿研究课题的简介。各大章均附有详细的关键文献,希望能帮助有兴趣的读者很快地进入这些研究领域。
前辅文
Part I FUNDAMENTAL THEORY
1 Introduction
1.1 Background and Motivation
1.2 A Brief History of Complex Network Research
1.2.1 The Königsburg Seven-Bridge Problem
1.2.2 Random Graph Theory
1.2.3 Small-World Experiments
1.2.4 Strengths of Weak Ties
1.2.5 Heterogeneity and the WWW
1.3 New Era of Complex-Network Studies
Exercises
References
2 Preliminaries
2.1 Elementary Graph Theory
2.1.1 Background
2.1.2 Basic Concepts
2.1.3 Adjacency, Incidence and Laplacian Matrices
2.1.4 Degree Correlation and Assortativity
2.1.5 Some Basic Results on Graphs
2.1.6 Eulerian and Hamiltonian Graphs
2.1.7 Plane and Planar Graphs
2.1.8 Trees and Bipartite Graphs
2.1.9 Directed Graphs
2.1.10 Weighted Graphs
2.1.11 Some Applications
2.2 Elementary Probability and Statistics
2.2.1 Probability Preliminaries
2.2.2 Statistics Preliminaries
2.2.3 Law of Large Numbers and Central Limit Theorem
2.2.4 Markov Chains
2.3 Elementary Dynamical Systems Theory
2.3.1 Background and Motivation
2.3.2 Some Analytical Tools
2.3.3 Chaos in Nonlinear Systems
2.3.4 Kolmogorov-Sinai Entropy
2.3.5 Some Examples of Chaotic Systems
2.3.6 Stabilities of Nonlinear Systems
Exercises
References
3 Network Topologies: Basic Models and Properties
3.1 Introduction
3.2 Regular Networks
3.3 ER Random-Graph Model
3.4 Small-World Network Models
3.4.1 WS Small-World Network Model
3.4.2 NW Small-World Network Model
3.4.3 Statistical Properties of Small-World Network Models
3.5 Navigable Small-World Network Model
3.6 Scale-Free Network Models
3.6.1 BA Scale-Free Network Model
3.6.2 Robustness versus Fragility
3.6.3 Modified BA Models
3.6.4 A Simple Model with Power-Law Degree Distribution
3.6.5 Local-World and Multi-Local-World Network Models
Exercises
References
Part II APPLICATIONS - SELECTED TOPICS
4 Internet: Topology and Modeling
4.1 Introduction
4.2 Topological Properties of the Internet
4.2.1 Power–Law Node-Degree Distribution
4.2.2 Hierarchical Structure
4.2.3 Rich-Club Structure
4.2.4 Disassortative Property
4.2.5 Coreness and Betweenness
4.2.6 Growth of the Internet
4.2.7 Router-Level Internet Topology
4.2.8 Geographic Layout of the Internet
4.3 Random-Graph Network Topology Generator
4.4 Structural Network Topology Generators
4.4.1 Tiers Topology Generator
4.4.2 Transit–Stub Topology Generator
4.5 Connectivity-Based Network Topology Generators
4.5.1 Inet
4.5.2 BRITE Model
4.5.3 GLP Model
4.5.4 PFP Model
4.5.5 TANG Model
4.6 Multi-Local-World Model
4.6.1 Theoretical Considerations
4.6.2 Numerical Results with Comparison
4.6.3 Performance Comparison
4.7 HOT Model
4.8 Dynamical Behaviors of the Internet Topological Characteristics
4.9 Traffic Fluctuation on Weighted Networks
4.9.1 Weighted Networks
4.9.2 GRD Model
4.9.3 Data Traffic Fluctuations
References
5 Epidemic Spreading Dynamics
5.1 Introduction
5.2 Epidemic Threshold Theory
5.2.1 Epidemic (SI, SIS, SIR) Models
5.2.2 Epidemic Thresholds on Homogenous Networks
5.2.3 Statistical Data Analysis
5.2.4 Epidemic Thresholds on Heterogeneous Networks
5.2.5 Epidemic Thresholds on BA Networks
5.2.6 Epidemic Thresholds on Finite-Sized Scale-Free Networks
5.2.7 Epidemic Thresholds on Correlated Networks
5.2.8 SIR Model of Epidemic Spreading
5.2.9 Epidemic Spreading on Quenched Networks
5.3 Epidemic Spreading on Spatial Networks
5.3.1 Spatial Networks
5.3.2 Spatial Network Models for Infectious Diseases
5.3.3 Impact of Spatial Clustering on Disease Transmissions
5.3.4 Large-Scale Spatial Epidemic Spreading
5.3.5 Impact of Human Location-Specific Contact Patterns
5.4 Immunization on Complex Networks
5.4.1 Random Immunization
5.4.2 Targeted Immunization
5.4.3 Acquaintance Immunization
5.5 Computer Virus Spreading over the Internet
5.5.1 Random Constant-Spread Model
5.5.2 A Compartment-Based Model
5.5.3 Spreading Models of Email Viruses
5.5.4 Effects of Computer Virus on Network Topologies
References
6 Community Structures
6.1 Introduction
6.1.1 Various Scenarios in Real-World Social Networks
6.1.2 Generalization of Assortativity
6.2 Community Structure and Modularity
6.2.1 Community Structure
6.2.2 Modularity
6.2.3 Modularity of Weighted and Directed Networks
6.3 Modularity-Based Community Detecting Algorithms
6.3.1 CNM Scheme
6.3.2 BGLL Scheme
6.3.3 Multi-Slice Community Detection
6.3.4 Detecting Spatial Community Structures
6.4 Other Community Partitioning Schemes
6.4.1 Limitations of the Modularity Measure
6.4.2 Clique Percolation Scheme
6.4.3 Edge-Based Community Detection Scheme
6.4.4 Evaluation Criteria for Community Detection Algorithms
6.5 Some Recent Progress
References
7 Network Games
7.1 Introduction
7.2 Two-Player/Two-Strategy Evolutionary Games on Networks
7.2.1 Introduction to Games on Networks
7.2.2 Two-Player/Two-Strategy Games on Regular Lattices
7.2.3 Two-Player/Two-Strategy Games on BA Scale-Free Networks
7.2.4 Two-Player/Two-Strategy Games on Correlated Scale-Free Networks
7.2.5 Two-Player/Two-Strategy Games on Clustered Scale-Free Networks
7.3 Multi-Player/Two-Strategy Evolutionary Games on Networks
7.3.1 Introduction to Public Goods Game
7.3.2 Multi-Player/Two-Strategy Evolutionary Games on BA Networks
7.3.3 Multi-Player/Two-Strategy Evolutionary Games on Correlated Scale-free Networks
7.3.4 Multi-Player/Two-Strategy Evolutionary Games on Clustered Scale-free Networks
7.4 Adaptive Evolutionary Games on Networks
References
8 Network Synchronization
8.1 Introduction
8.2 Complete Synchronization of Continuous-Time Networks
8.2.1 Complete Synchronization of General Continuous-Time Networks
8.2.2 Complete Synchronization of Linearly Coupled Continuous-Time Networks
8.3 Complete Synchronization of Some Typical Dynamical Networks
8.3.1 Complete Synchronization of Regular Networks
8.3.2 Synchronization of Small-World Networks
8.3.3 Synchronization of Scale-Free Networks
8.3.4 Complete Synchronization of Local-World Networks
8.4 Phase Synchronization
8.4.1 Phase Synchronization of the Kuramoto Model
8.4.2 Phase Synchronization of Small-World Networks
8.4.3 Phase Synchronization of Scale-Free Networks
8.4.4 Phase Synchronization of Nonuniformly Coupled Networks
References
9 Network Control
9.1 Introduction
9.2 Spatiotemporal Chaos Control on Regular CML
9.3 Pinning Control of Complex Networks
9.3.1 Augmented Network Approach
9.3.2 Pinning Control of Scale-Free Networks
9.4 Pinning Control of General Complex Networks
9.4.1 Stability Analysis of General Networks under Pinning Control
9.4.2 Pinning and Virtual Control of General Networks
9.4.3 Pinning and Virtual Control of Scale-Free Networks
9.5 Time-Delay Pinning Control of Complex Networks
9.6 Consensus and Flocking Control
References
10 Brief Introduction to Other Topics
10.1 Human Opinion Dynamics
10.2 Human Mobility and Behavioral Dynamics
10.3 Web PageRank, SiteRank and BrowserRank
10.3.1 Methods Based on Edge Analysis
10.3.2 Methods Using Users’ Behavior Data
10.4 Recommendation Systems
10.5 Network Edge Prediction
10.6 Living Organisms and Bionetworks
10.7 Cascading Reactions on Networks
References
Index