注册 登录 进入教材巡展
#

出版时间:2023-03

出版社:高等教育出版社

以下为《二次型和Clifford群的算术和解析理论(影印版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040592986
  • 1版
  • 458695
  • 46254103-8
  • 精装
  • 16开
  • 2023-03
  • 450
  • 275
  • 数学类
  • 本科 研究生及以上
目录

 前辅文
 Chapter I. Algebraic theory of quadratic forms, Clifford algebras, and spin groups
  1. Quadratic forms and associative algebras
  2. Clifford algebras
  3. Clifford groups and spin groups
  4. Parabolic subgroups
 Chapter II. Quadratic forms, Clifford algebras, and spin groups over a local or global field
  5. Orders and ideals in an algebra
  6. Quadratic forms over a local field
  7. Lower-dimensional cases and the Hasse principle
  8. Part I. Clifford groups over a local field
  8. Part II. Formal Hecke algebras and formal Euler factors
  9. Orthogonal, Clifford, and spin groups over a global field
 Chapter III. Quadratic Diophantine equations
  10. Quadratic Diophantine equations over a local field
  11. Quadratic Diophantine equations over a global field
  12. The class number of an orthogonal group and sums of squares
  13. Nonscalar quadratic Diophantine equations; Connection with the mass formula; A historical perspective
 Chapter IV. Groups and symmetric spaces over R
  14. Clifford and spin groups over R; The case of signature (1, m)
  15. The case of signature (2, m)
  16. Orthogonal groups over R and symmetric spaces
 Chapter V. Euler products and Eisenstein series on orthogonal groups
  17. Automorphic forms and Euler products on an orthogonal group
  18. Eisenstein series on Oω
  19. Eisenstein series on Oη
  20. Arithmetic description of the pullback of an Eisenstein series
  21. Analytic continuation of Euler products and Eisenstein series
 Chapter VI. Euler products and Eisenstein series on Clifford groups
  22. Euler products on G+(V )
  23. Eisenstein series on G(H, 2−1η)
  24. Eisenstein series of general types on a Clifford group
  25. Euler products for holomorphic forms on a Clifford group
  26. Proof of the last main theorem
 Appendix
  A1. Differential operators on a semisimple Lie group
  A2. Eigenvalues of integral operators
  A3. Structure of Clifford algebras over R
  A4. An embedding of G1(V ) into a symplectic group
  A5. Spin representations and Lie algebras
 References
 Frequently used symbols
 Index