注册 登录 进入教材巡展
#
  • #
  • #

出版时间:2020-04

出版社:高等教育出版社

以下为《二次型的代数和几何理论(影印版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040534955
  • 1版
  • 296647
  • 46253889-3
  • 精装
  • 16开
  • 2020-04
  • 730
  • 456
  • 理学
  • 数学
  • 数学类
  • 研究生及以上
目录

 前辅文
 Introduction
 Part 1. Classical theory of symmetric bilinear forms and quadratic forms
  Chapter I. Bilinear Forms
   1. Foundations
   2. The Witt and Witt-Grot hendieck rings of symmetric bilinear forms
   3. Chain equivalence
   4. Structure of the Witt ring
   5. The Stiefel-Whitney map
   6. Bilinear Pfister forms
  Chapter II. Quadratic Forms
   7. Foundations
   8. Witt's Theorems
   9. Quadratic Pfister forms I
   10. Totally singular forms
   11. The Clifford algebra
   12. Binary quadratic forms and quadratic algebras
   13. The discriminant
   14. The Clifford invariant
   15. Chain p-equivalence of quadratic Pfister forms
   16. Cohomological invariants
  Chapter III. Forms over Rational Function Fields
   17. The Cassels-Pfister Theorem
   18. Values of forms
   19. Forms over a discrete valuation ring
   20. Similarities of forms
   21. An exact sequence for W(F(t))
  Chapter IV. Function Fields of Quadrics
   22. Quadrics
   23. Quadratic Pfister forms II
   24. Linkage of quadratic forms
   25. The submodule Jn(F)
   26. The Separation Theorem
   27. A further characterization of quadratic Pfister forms
   28. Excellent quadratic forms
   29. Excellent field extensions
   30. Central simple algebras over function fields of quadratic forms
  Chapter V. Bilinear and Quadratic Forms and Algebraic Extensions
   31. Structure of the Witt ring
   32. Addendum on torsion
   33. The total signature
   34. Bilinear and quadratic forms under quadratic extensions
   35. Torsion in In(F) and torsion Pfister forms
  Chapter VI. u-invariants
   36. The iz-invariant
   37. The u-invariant for formally real fields
   38. Construction of fields with even u-invariant
   39. Addendum: Linked fields and the Hasse number
  Chapter VII. Applications of the Milnor Conjecture
   40. Exact sequences for quadratic extensions
   41. Annihilators of Pfister forms
   42. Presentation of In(F)
   43. Going down and torsion-freeness
  Chapter VIII. On the Norm Residue Homomorphism of Degree Two
   44. The main theorem
   45. Geometry of conic curves
   46. Key exact sequence
   47. Hilbert Theorem 90 for K2
   48. Proof of the main theorem
 Part 2. Algebraic cycles
  Chapter IX. Homology and Cohomology
   49. The complex C* (X)
   50. External products
   51. Deformation homomorphisms
   52. if-homology groups
   53. Euler classes and projective bundle theorem
   54. Chern classes
   55. Gysin and pull-back homomorphisms
   56. if-cohomology ring of smooth schemes
  Chapter X. Chow Groups
   57. Definition of Chow groups
   58. Segre and Chern classes
  Chapter XL Steenrod Operations
   59. Definition of the Steenrod operations
   60. Properties of the Steenrod operations
   61. Steenrod operations for smooth schemes
  Chapter XII. Category of Chow Motives
   62. Correspondences
   63. Categories of correspondences
   64. Category of Chow motives
   65. Duality
   66. Motives of cellular schemes
   67. Nilpotence Theorem
 Part 3. Quadratic forms and algebraic cycles
  Chapter XIII. Cycles on Powers of Quadrics
   68. Split quadrics
   69. Isomorphisms of quadrics
   70. Isotropic quadrics
   71. The Chow group of dimension 0 cycles on quadrics
   72. The reduced Chow group
   73. Cycles on X2
  Chapter XIV. The Izhboldin Dimension
   74. The first Witt index of subforms
   75. Correspondences
   76. The main theorem
   77. Addendum: The Pythagoras number
  Chapter XV. Application of Steenrod Operations
   78. Computation of Steenrod operations
   79. Values of the first Witt index
   80. Rost correspondences
   81. On the 2-adic order of higher Witt indices, I
   82. Holes in In
   83. On the 2-adic order of higher Witt indices, II
   84. Minimal height
  Chapter XVI. The Variety of Maximal Totally Isotropic Subspaces
   85. The variety Gr(    86. The Chow ring of Gr(y?) in the split case
   87. The Chow ring of Gr(<^) in the general case
   88. The invariant J(y>)
   89. Steenrod operations on Ch(Gr (<£>))
   90. Canonical dimension
  Chapter XVII. Motives of Quadrics
   91. Comparison of some discrete invariants of quadratic forms
   92. The Nilpotence Theorem for quadrics
   93. Criterion of isomorphism
   94. Indecomposable summands
 Appendices
  95. Formally real fields
  96. The space of orderings
  97. Cn-fields
  98. Algebras
  99. Galois cohomology
  100. Milnor if-theory of fields
  101. The cohomology groups Hn^(F, Z/raZ)
  102. Length and Herbrand index
  103. Places
  104. Cones and vector bundles
  105. Group actions on algebraic schemes
 Bibliography
 Notation
 Terminology