注册 登录 进入教材巡展
#

出版时间:2025-01

出版社:电子工业出版社

以下为《人工智能通识导论》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 电子工业出版社
  • 9787121487552
  • 1-2
  • 560119
  • 平塑
  • 16开
  • 2025-01
  • 305
  • 224
  • 计算机科学与技术
  • 本科
内容简介
本教材围绕人工智能的核心概念、主要技术脉络、核心关键算法、典型应用场景等设立对应章节,阐述了人工智能的基本概念和历史沿革,论述了人工智能理论和技术体系的基本框架,介绍了人工智能主要分支领域的基本知识,并体现了人工智能技术的最新进展,以及人工智能伦理的思考。全书共10章,内容包括人工智能与智能社会、知识与知识表示、推理技术、搜索算法、专家系统、机器学习、神经网络、人工智能应用研究、智能机器人、人工智能伦理与未来展望。 本教材通俗易懂,理例结合,可作为高等院校非计算机大类专业师生教材,也可作为人工智能相关专业低年级本科生和广大人工智能技术爱好者的参考用书。
目录
目 录__eol__第1章 人工智能与智能社会:人类新时代 1__eol__1.1 人类智能与知识型社会 2__eol__1.2 人工智能的第一缕霞光 2__eol__1.3 人工智能是什么 3__eol__1.4 人工智能的“进化史” 3__eol__1.5 人工智能研究什么 5__eol__1.6 百花齐放的人工智能应用 6__eol__本章小结 7__eol__参考文献 8__eol__思考题 8__eol__第2章 知识与知识表示:智能的“血液” 10__eol__2.1 概念与本体:人类知识的基础构架 11__eol__2.1.1 概念与概念系统 11__eol__2.1.2 知识本体 12__eol__2.2 知识的计算机表示:计算机心里的知识 13__eol__2.2.1 分布表示方法 14__eol__2.2.2 预训练语言模型 16__eol__2.3 产生式表示法:因果知识的表示 17__eol__2.3.1 产生式规则 17__eol__2.3.2 产生式系统 18__eol__2.3.3 产生式表示法的优缺点及适用领域 22__eol__2.4 框架表示法:把知识装进“框” 22__eol__2.4.1 框架的构成 23__eol__2.4.2 框架系统 24__eol__2.4.3 框架的应用案例 24__eol__2.5 语义网络:知识的“网”状化表示 25__eol__2.5.1 语义网络的发展历史 26__eol__2.5.2 语义网络的定义和特征 26__eol__2.5.3 语义网络的分类 27__eol__2.5.4 语义网络的构建方法 28__eol__2.5.5 语义网络的优势 28__eol__2.5.6 语义网络应用面临的困难和挑战 29__eol__2.6 知识图谱:知识的“谱”系化表示 30__eol__2.6.1 知识图谱的发展 30__eol__2.6.2 知识图谱表示方法 31__eol__2.6.3 知识图谱的构建 34__eol__本章小结 39__eol__参考文献 40__eol__思考题 42__eol__第3章 推理技术:机器真的能举一反三吗 43__eol__3.1 先来入个门 44__eol__3.1.1 概况 44__eol__3.1.2 基本概念 44__eol__3.2 确定性推理:让机器帮你做决策 45__eol__3.3 正向推理和逆向推理:在事实与结论之间来回奔跑 46__eol__3.3.1 正向推理 46__eol__3.3.2 逆向推理 46__eol__3.4 推理方法与冲突消解策略:糟糕,选择困难症又犯了 47__eol__3.5 不确定性推理靠谱吗 48__eol__3.5.1 模糊逻辑与模糊推理:推理技术发展中的一面大旗 48__eol__3.5.2 模糊思维表达:模糊集合的“精确”存在 49__eol__3.5.3 模糊关系及其运算:把0~1的灰色地带表示出来 51__eol__3.5.4 模糊推理的应用:让模糊理论“咸鱼翻身”的场景 53__eol__3.6 常识推理 53__eol__3.6.1 何谓常识 53__eol__3.6.2 常见的常识推理 54__eol__3.6.3 常识推理的主要技术 54__eol__本章小结 55__eol__参考文献 55__eol__思考题 56__eol__第4章 搜索算法:弱水三千,只取一瓢饮 57__eol__4.1 状态空间表示:一切皆有可能 58__eol__4.2 盲目搜索:基本图搜索策略 59__eol__4.2.1 回溯策略:逆流而上 59__eol__4.2.2 宽度优先搜索策略:先进先出 61__eol__4.2.3 深度优先搜索策略:后进先出 64__eol__4.3 启发式搜索:灵光一闪 66__eol__4.3.1 启发式搜索策略和估价函数 66__eol__4.3.2 有序搜索:论价排辈 67__eol__4.3.3 A*算法:底线思维 68__eol__4.4 博弈搜索:势均力敌 72__eol__4.4.1 博弈搜索的基本思想 72__eol__4.4.2 博弈搜索的控制策略 72__eol__4.4.3 博弈搜索算法:极大极小值算法 73__eol__4.4.4 对策:α?β剪枝算法 73__eol__本章小结 75__eol__练习题 75__eol__思考题 76__eol__第5章 专家系统:让懂专业的系统做专业的事 77__eol__5.1 系统构成与工作原理:麻雀虽小,五脏俱全 78__eol__5.2 不确定性推理:“头疼不舒服,是感冒了吗?可能吧!” 79__eol__5.2.1 主观贝叶斯推理 81__eol__5.2.2 证据理论 83__eol__5.2.3 模糊逻辑 88__eol__5.2.4 信念网络 92__eol__5.3 专家系统示例:术业有专攻 100__eol__5.4 专家系统的应用:没有金刚钻,别揽瓷器活儿 102__eol__本章小结 102__eol__参考文献 103__eol__思考题 103__eol__第6章 机器学习:让机器变得智能 105__eol__6.1 什么是机器学习 106__eol__6.2 无监督学习:无师自通 106__eol__6.2.1 k-Means算法、k中心点算法:近朱者赤,近墨者黑 107__eol__6.2.2 EM聚类:期望最大化 109__eol__6.2.3 CLARA算法、CLARANS算法:随机选择的站队 112__eol__6.2.4 从传说中走来的谱聚类 113__eol__6.2.5 基于约束的聚类 117__eol__6.2.6 在线聚类 117__eol__6.3 监督学习:严师出高徒 118__eol__6.3.1 支持向量机:在超平面上反复横跳 118__eol__6.3.2 概率图模型:不确定性推理的模型 119__eol__6.3.3 神经网络:神经元的化身 122__eol__6.4 强化学习:不以物喜,不以己悲 123__eol__6.4.1 强化学习模型及基本要素 124__eol__6.4.2 马尔可夫决策 126__eol__6.4.3 Q学习:愤怒的小鸟 129__eol__6.4.4 深度Q学习:强化学习的未来 131__eol__6.5 实践出真知 133__eol__本章小结 134__eol__思考题 134__eol__第7章 神经网络:让机器更像人一样思考 135__eol__7.1 概述 136__eol__7.2 感知机:安能辨我是雄雌 138__eol__7.2.1 传统方法 138__eol__7.2.2 感知机:从0到1,最简单的神经网络 139__eol__7.2.3 多层感知机:从1到100,更复杂的神经网络 142__eol__7.3 参数学习:填饱神经网络的肚子 144__eol__7.3.1 反向传播算法 144__eol__7.3.2 层间学习法 145__eol__7.4 久经考验的大神们 145__eol__7.4.1 卷积神经网络 145__eol__7.4.2 注意力机制 150__eol__本章小结 154__eol__思考题 154__eol__第8章 人工智能应用研究 155__eol__8.1 概述 156__eol__8.2 智能司法:让冤假错案远离人间 156__eol__8.3 人脸识别:小偷竟然凭空消失 156__eol__8.4 智能交互:强大的秘书 158__eol__8.4.1 任务型对话系统 158__eol__8.4.2 开放域对话系统 160__eol__8.5 自动写作:唐诗宋词无所不会 161__eol__8.6 机器翻译:“一带一路”的强大助手 161__eol__8.7 汽车自动驾驶技术:拦路虎竟然是伦理与观念 162__eol__本章小结 163__eol__思考题 163__eol__第9章 智能机器人 165__eol__9.1 机器人的诞生与分类 166__eol__9.1.1 诞生啦,机器人 166__eol__9.1.2 机器人的基本构成及特点 167__eol__9.1.3 包罗万象的机器人类别 168__eol__9.2 让机器人“活起来”的关键技术 170__eol__9.2.1 环境感知:看得见,摸得着 170__eol__9.2.2 路径规划技术:机器人的行进方法 175__eol__9.2.3 控制算法:机器人的“大脑” 178__eol__9.3 多机器人协同:机器人之间的交流与合作 184__eol__9.3.1 协同感知 184__eol__9.3.2 协同作业 185__eol__9.3.3 协同编队 187__eol__9.4 神通广大的应用示例 188__eol__9.5 机器人与社会:它会怎样影响就业 190__eol__本章小结 191__eol__思考题 192__eol__第10章 人工智能伦理与未来展望:波起微澜,拭目以待 193__eol__10.1 机器伦理:人工智能助手还是人工智能杀手 194__eol__10.1.1 人工智能领域的伦理焦点问题 198_