近世代数初步 / 21世纪数学规划教材·数学基础课系列
¥30.00定价
作者: 徐竞,徐明曜
出版时间:2020-07
出版社:北京大学出版社
- 北京大学出版社
- 9787301313695
- 1版
- 340266
- 61222251-3
- 平装
- A5
- 2020-07
- 242
- 260
- 理学
- 数学
- O153
- 数学
- 本科
作者简介
内容简介
第1章讲述集合论的基本知识。本章大部分内容都已经在先修课程中出现过,授课教师可以根据学生的具体情况做简单的讲解,也可以让学生自学。第2章讲述群、环、域等代数结构的基本定义和若干重要例子,这一部分内容为后续章节展开讨论各个代数结构做了必要的准备。第3章讲述群论的基本知识。本书注重具体群的例子的讲解与应用,着重引导学生运用所学的知识去解决一些简单的群同构分类问题。希望在学完这一章后,学生可以完成一些小阶数群的同构分类问题。第4章和第5章讲述环论的最基本的一些知识以及整环的因子分解理论,这些既是环论中最为经典的基础理论,也是最后一章域扩张理论的准备知识。最后,在第6章中我们开始讲述域扩张理论,并简单应用该理论,证明了古希腊三大几何作图不能问题。
目录
第1 章 预备知识
1.1 集合, 映射, 等价关系
1.2 代数运算, 代数系
1.3 整数系
第2 章 群、环、体、域
2.1 半群与群
2.2 环
2.3 体和域
第3 章 群
3.1 对称群
3.2 子群, 生成子群
3.3 陪集, 拉格朗日定理
3.4 正规子群与商群
3.5 同态、同态基本定理
3.6 同构定理
3.7 数学故事|| 分类有限单群的艰难历程
3.8 群的直积
3.9 群在集合上的作用
3.10 西罗定理
3.11 数学故事|| 群论创始人伽罗瓦
第4 章 环
4.1 子环
4.2 理想及商环
4.3 一元多项式环
4.4 环的同态与同构
4.5 素理想, 极大理想
4.6 分式域
4.7 环的直积与中国剩余定理
4.8 数学故事|| 代数女神艾米诺特
第5章 整环内的因子分解理论
5.1 唯一分解整环的概念
5.2 主理想整环与欧几里得整环
5.3 唯一分解整环上的多项式环
第6 章 域
6.1 域的特征
6.2 域扩张、域的单扩张
6.3 域的有限扩张
6.4 多项式的分裂域
6.5 有限域
6.6 分圆域
6.7 几何作图不能问题
6.8 数学故事|| 我国最早从事抽象代数研究的数学家曾炯名词索引
参考文献
1.1 集合, 映射, 等价关系
1.2 代数运算, 代数系
1.3 整数系
第2 章 群、环、体、域
2.1 半群与群
2.2 环
2.3 体和域
第3 章 群
3.1 对称群
3.2 子群, 生成子群
3.3 陪集, 拉格朗日定理
3.4 正规子群与商群
3.5 同态、同态基本定理
3.6 同构定理
3.7 数学故事|| 分类有限单群的艰难历程
3.8 群的直积
3.9 群在集合上的作用
3.10 西罗定理
3.11 数学故事|| 群论创始人伽罗瓦
第4 章 环
4.1 子环
4.2 理想及商环
4.3 一元多项式环
4.4 环的同态与同构
4.5 素理想, 极大理想
4.6 分式域
4.7 环的直积与中国剩余定理
4.8 数学故事|| 代数女神艾米诺特
第5章 整环内的因子分解理论
5.1 唯一分解整环的概念
5.2 主理想整环与欧几里得整环
5.3 唯一分解整环上的多项式环
第6 章 域
6.1 域的特征
6.2 域扩张、域的单扩张
6.3 域的有限扩张
6.4 多项式的分裂域
6.5 有限域
6.6 分圆域
6.7 几何作图不能问题
6.8 数学故事|| 我国最早从事抽象代数研究的数学家曾炯名词索引
参考文献