- 机械工业出版社
- 9787111643890
- 1版
- 319345
- 47229639-1
- 平装
- 16开
- 2020-03
- 552
- 368
- 工学
- 控制科学与工程
- O235
- 计算机通信类
- 本科
作者简介
内容简介
本书是模式识别领域的入门教材,系统阐述了模式识别中的基础知识、主要模型及热门应用,并给出了近年来本领域一些新的成果和观点;通过理论学习和动手实践相结合的形式使初学者能有效入门,并培养独立解决任务的能力,为模式识别的项目开发及相关科研活动打好基础.
全书共15章,大致分为五部分:第一部分(第1~4章)介绍了本书的概论和基础知识,包括绪论、数学背景知识、模式识别系统概述以及评估;第二部分(第5~6章)介绍了与领域知识无关的特征提取,包括主成分分析和Fisher线性判别;第三部分(第7~10章)介绍了分类器与其他工具,包括支持向量机、概率方法、距离度量与数据变换、信息论和决策树;第四部分(第11~12章)介绍了如何处理变化多端的数据,包括稀疏数据和未对齐数据、隐马尔可夫模型;第五部分(第13~15章)介绍了一些高阶课题,包括正态分布、EM算法和卷积神经网络.
本书可作为高等院校人工智能、计算机、自动化、电子和通信等相关专业研究生或本科生的教材,也可供人工智能、计算机、自动化、电子和通信等领域研究人员和工程技术人员参考.