线性代数简明教程(英文版)
¥49.00定价
作者: 刘国庆
出版时间:2019-09
出版社:化学工业出版社
- 化学工业出版社
- 9787122345134
- 1版
- 320087
- 60230118-6
- 16开
- 2019-09
- 178
- 134
- 理学
- 数学
- ①O151.2
- 公共课类
- 本科
作者简介
目录
Chapter 1 Linear Equations in Linear Algebra001
1.1Systems of Linear Equations001
1.2Row Reduction and Echelon Forms008
1.3Solutions of Linear Systems012
1.4Vector Equations014
Exercises017
Chapter 2 Matrix Algebra019
2.1Matrix Operations019
2.2The Inverse of a Matrix024
2.3Partitoned Matrices028
2.4Matrix Factorizations031
2.5Subspace of Rn032
2.6Dimension and Rank035
Exercises037
Chapter 3 Determinants040
3.1Introduction to Determinants040
3.2Properties of Determinants043
3.3Cofactor Expansion048
3.4The Inverse of a Matrix050
3.5Cramer’s Rule053
Exercises054
Chapter 4 Vector Spaces058
4.1Definition of Vector Spaces058
4.2Subspaces and Span062
4.3Linearly Independent Sets068
4.4Bases and Dimension071
4.5Inner Product,Length,Angle074
4.6Orthonormal Basis and the Gram-Schmidt Procedure078
Exercises084
Chapter 5 Eigenvalues and Eigenvectors088
5.1Definition of Eigenvalues and Eigenvectors088
5.2Properties of Eigenvalues and Eigenvectors092
5.3Similarity and Diagonalization096
5.4Diagonalization of Symmetric Matrices100
Exercises105
Chapter 6 Solution Sets of Linear Systems107
6.1Homogeneous Linear Systems107
6.2Solutions of Nonhomogeneous Systems108
6.3Applications of Linear Systems110
Exercises113
Chapter 7 Symmetric Matrices and Quadratic Forms117
7.1Diagonalization of Symmetric Matrices117
7.2Quadratic Forms119
7.3Quadratic Problems122
7.4The Singular Value Decomposition126
7.5Applications to Statistics129
Exercises132
References134
1.1Systems of Linear Equations001
1.2Row Reduction and Echelon Forms008
1.3Solutions of Linear Systems012
1.4Vector Equations014
Exercises017
Chapter 2 Matrix Algebra019
2.1Matrix Operations019
2.2The Inverse of a Matrix024
2.3Partitoned Matrices028
2.4Matrix Factorizations031
2.5Subspace of Rn032
2.6Dimension and Rank035
Exercises037
Chapter 3 Determinants040
3.1Introduction to Determinants040
3.2Properties of Determinants043
3.3Cofactor Expansion048
3.4The Inverse of a Matrix050
3.5Cramer’s Rule053
Exercises054
Chapter 4 Vector Spaces058
4.1Definition of Vector Spaces058
4.2Subspaces and Span062
4.3Linearly Independent Sets068
4.4Bases and Dimension071
4.5Inner Product,Length,Angle074
4.6Orthonormal Basis and the Gram-Schmidt Procedure078
Exercises084
Chapter 5 Eigenvalues and Eigenvectors088
5.1Definition of Eigenvalues and Eigenvectors088
5.2Properties of Eigenvalues and Eigenvectors092
5.3Similarity and Diagonalization096
5.4Diagonalization of Symmetric Matrices100
Exercises105
Chapter 6 Solution Sets of Linear Systems107
6.1Homogeneous Linear Systems107
6.2Solutions of Nonhomogeneous Systems108
6.3Applications of Linear Systems110
Exercises113
Chapter 7 Symmetric Matrices and Quadratic Forms117
7.1Diagonalization of Symmetric Matrices117
7.2Quadratic Forms119
7.3Quadratic Problems122
7.4The Singular Value Decomposition126
7.5Applications to Statistics129
Exercises132
References134