紧Kähler流形的基本群(影印版)
作者: J.Amoros,M.Burger等
出版时间:2020-04
出版社:高等教育出版社
- 高等教育出版社
- 9787040536331
- 1版
- 296687
- 46254327-3
- 精装
- 16开
- 2020-04
- 256
- 160
- 理学
- 数学
- 数学类
- 研究生及以上
前辅文
Chapter 1 Introduction
1.Kahler geometry
2.Kahler and non-Kahler groups
3.Fundamental groups of compact complex surfaces
4.Complex symplectic non-Kahler manifolds
Chapter 2 Fibering Kahler manifolds and Kahler groups
1.The fibration problem
2.The Albanese map and free Abelian representations
3.Fibering over Riemann surfaces
4.Fibering compact complex surfaces
Chapter 3 The de Rham fundamental group
1.The de Rham fundamental group and the 1-minimal model
2.Formality of compact Kahler manifolds
3.Applications to the fundamental group and examples
4.The Albanese map and the de Rham fundamental group
5.Non-fibered Kahler groups
6.Mixed Hodge structures on the de Rham fundamental group
Chapter 4 L2-cohomology of Kahler groups
1.Introduction
2.Simplicial L2-cohomology and ends
3.de Rham L2-cohomology
4.Fibering Kahler manifolds over D2
5.Fibering Kahler manifolds over Riemann surfaces
Chapter 5 Existence theorems for harmonic maps
1.Definitions
2.Hartman's uniqueness theorem
3.The Eells-Sampson theorem
4.Equivariant harmonic maps
Chapter 6. Applications of harmonic maps
1.Existence of pluriharmonic maps
2.First applications
3.Period domains
4.The factorisation theorem
5.Non-linear groups
6.Harmonic maps to trees
Chapter 7 Non-Abelian Hodge theory
1.Basic concepts
2.Yang-Mills equations and the C*-action on Higgs bundles
3.Hyperkahler structures and complete integrability
4.Applications
Chapter 8 Positive results for infinite groups
1.Introduction
2.The first construction
3.A Lefschetz theorem for smooth open varieties
4.The general construction
5.Non-residually finite Kahler groups
Appendix A. Pro group theory
1.Definitions of group completions
2.Nilpotent completions
3.Comparison of nilpotent completions
Appendix B. A glossary of Hodge theory
Bibliography
Index