注册 登录 进入教材巡展
#
  • #

出版时间:2019-03

出版社:机械工业出版社

以下为《实分析与复分析(英文版·原书第3版·典藏版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
试读
  • 机械工业出版社
  • 9787111619550
  • 1-5
  • 262653
  • 46255285-2
  • 平装
  • 16开
  • 2019-03
  • 500
  • 416
  • 理学
  • 数学
  • 数学与应用数学
  • 本科
内容简介
本书是分析领域内的一部经典著作。主要内容包括:抽象积分、正博雷尔测度、LP-空间、希尔伯特空间的初等理论、巴拿赫空间技巧的例子、复测度、微分、积空间上的积分、傅里叶变换、全纯函数的初等性质、调和函数、*大模原理、有理函数逼近、共形映射、全纯函数的零点、解析延拓、HP-空间、巴拿赫代数的初等理论、全纯傅里叶变换、用多项式一致逼近等。另外,书中还附有大量设计巧妙的习题。本书体例优美,实用性很强,列举的实例简明精彩,基本上对所有给出的命题都进行了论证,适合作为高等院校数学专业高年级本科生和研究生的教材。
目录
Preface
    Prologue: The Exponential Function
    Chapter 1 Abstract Integration 5
    Set-theoretic notations and terminology 6
    The concept of measurability 8
    Simple functions 15
    Elementary properties of measures 16
    Arithmetic in [0, ∞] 18
    Integration of positive functions 19
    Integration of complex functions 24
    The role played by sets of measure zero 27
    Exercises 31
    Chapter 2 Positive Borel Measures 33
    Vector spaces 33
    Topological preliminaries 35
    The Riesz representation theorem 40
    Regularity properties of Borel measures 47
    Lebesgue measure 49
    Continuity properties of measurable functions 55
    Exercises 57
    Chapter 3 [WTBX]L[WTBZ]\+p-Spaces 61
    Convex functions and inequalities 61
    The [WTBX]L[WTBZ]\+p-spaces 65
    Approximation by continuous functions 69
    Exercises 71
    Chapter 4 Elementary Hilbert Space Theory 76
    Inner products and linear functionals 76
    Orthonormal sets 82
    Trigonometric series 88
    Exercises 92
    Chapter 5 Examples of Banach Space Techniques 95
    Banach spaces 95
    Consequences of Baire’s theorem 97
    Fourier series of continuous functions 100
    Fourier coefficients of [WTBX]L[WTBZ]\+1-functions 103
    The Hahn-Banach theorem 104
    An abstract approach to the Poisson integral 108
    Exercises 112
    Chapter 6 Complex Measures 116
    Total variation 116
    Absolute continuity 120
    Consequences of the Radon-Nikodym theorem 124
    Bounded linear functionals on Lp 126
    The Riesz representation theorem 129
    Exercises 132
    Chapter 7 Differentiation 135
    Derivatives of measures 135
    The fundamental theorem of Calculus 14~
    Differentiable transformations 150
    Exercises 156
    Chapter 8 Integration on Product Spaces 160
    Measurability on cartesian products 160
    Product measures 163
    The Fubini theorem 164
    Completion of product measures 167
    Convolutions 170
    Distribution functions 172
    Exercises 174
    Chapter 9 Fourier Transforms 178
    Formal properties 178
    The inversion theorem 180
    The Plancherel theorem 185
    The Banach algebra [WTBX]L[WTBZ]\+1 190
    Exercises 193
    Chapter 10 Elementary Properties of Holomorphic
    Functions 196
    Complex differentiation 196
    Integration over paths 200
    The local Cauchy theorem 204
    The power series representation 208
    The open mapping theorem 214
    The global Cauchy theorem 217,
    The calculus of residues 224
    Exercises 227
    Chapter 11 Harmonic Functions 231
    The Cauchy-Riemann equations 231
    The Poisson integral 233
    The mean value property 237
    Boundary behavior of Poisson integrals 239
    Representation theorems 245
    Exercises 249
    Chapter 12 The Maximum Modulus Principle 253
    Introduction 253
    The Schwarz lemma 254
    The Phragmen-Lindel6f method 256
    An interpolation theorem 260
    A converse of the maximum modulus theorem 262
    Exercises 264
    Chapter 13 Approximation by Rational Functions 266
    Preparation 266
    Runge's theorem 270
    The Mittag-Leffier theorem 273
    Simply connected regions 274
    Exercises 276
    Chapter 14 Conformal Mapping 278
    Preservation of angles 278
    Linear fractional transformations 279
    Normal families 281
    The Riemann mapping theorem 282
    The class [WTHT]S[WTBZ] 285
    Continuity at the boundary 289
    Conformal mapping of an annulus 291
    Exercises 293
Chapter 15 Zeros of Holomorphic Functions 298
Infinite products 298
The Weierstrass factorization theorem 301
An interpolation problem 304
Jensen’s formula 307
Blaschke products 310
The Miintz-Szasz theorem 312
Exercises 315
Chapter 16 Analytic Continuation 319
Regular points and singular points 319
Continuation along curves 323
The monodromy theorem 326
Construction of a modular function 328
The Picard theorem 331
Exercises 332
Chapter 17 [WTBX]H[WTBZ]\+p-Spaces 335
Subharmonic functions 335
The spaces Hp and N 337
The theorem of F. and M. Riesz 341
Factorization theorems 342
The shift operator 346
Conjugate functions 350
Exercises 352
Chapter 18 Elementary Theory of Banach Algebras 356
Introduction 356
The invertible elements 357
Ideals and homomorphisms 362
Applications 365
Exercises 369
Chapter 19 Holomorphic Fourier Transforms 371
Introduction 371
Two theorems of Paley and Wiener 372
Quasi-analytic classes 377
The Denjoy-Carleman theorem 380
Exercises 383
Chapter 20 Uniform Approximation by Polynomials 386
Introduction 386
Some lemmas 387
Mergelyan’s theorem 390
Exercises 394
    Appendix: Hausdorff’s Maximality Theorem 395
    Notes and Comments 397
    Bibliography 405
    List of Special Symbols 407
    Index 409