注册 登录 进入教材巡展
#
  • #

出版时间:2019-03

出版社:机械工业出版社

以下为《数学分析原理(英文版·原书第3版·典藏版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
试读
  • 机械工业出版社
  • 9787111619543
  • 1-6
  • 262652
  • 46255286-0
  • 平装
  • 16开
  • 2019-03
  • 317
  • 352
  • 理学
  • 数学
  • 数学与应用数学
  • 本科
内容简介
本书涵盖了高等微积分学的丰富内容,*精彩的部分集中在基础拓扑结构、函数项序列与级数、多变量函数以及微分形式的积分等章节。
目录
Preface
Chapter 1 The Real and Complex Number Systems 1
Introduction 1
Ordered Sets 3
Fields 5
The Real Field 8
The Extended Real Number System 11
The Complex Field 12
Euclidean Spaces 16
Appendix 17
Exercises 21
Chapter 2 Basic Topology 24
Finite, Countable, and Uncountable Sets 24
Metric Spaces 30
Compact Sets 36
Perfect Sets 41 Connected Sets 42
Exercises 43
Chapter 3 Numerical Sequences and Series 47
Convergent Sequences 47
Subsequences 51
Cauchy Sequences 52
Upper and Lower Limits 55
Some Special Sequences 57
Series 58
Series of Nonnegative Terms 61
The Number e 63
The Root and Ratio Tests 65
Power Series 69
Summation by Parts 70
Absolute Convergence 71
Addition and Multiplication of Series 72
Rearrangements 75
Exercises 78
Chapter 4 Continuity 83
Limits of Functions 83
Continuous Functions 85
Continuity and Compactness 89
Continuity and Connectedness 93
Discontinuities 94
Monotonic Functions 95
Infinite Limits and Limits at Infinity 97
Exercises 98
Chapter 5 Differentiation 103
The Derivative of a Real Function 103
Mean Value Theorems 107
The Continuity of Derivatives 108
L'Hospital's Rule 109
Derivatives of Higher Order 110
Taylor’s Theorem 110
Differentiation of Vector-valued Functions 111
Exercises 114
    Chapter 6 The Riemann-Stieltjes Integral 120
    Definition and Existence of the Integral 120
    Properties of the Integral 128
    Integration and Differentiation 133
    Integration of Vector-valued Functions 135
    Rectifiable Curves 136
    Exercises 138
    Chapter 7 Sequences and Series of Functions, 143
    Discussion of Main Problem 143
    Uniform Convergence 147
    Uniform Convergence and Continuity 149
    Uniform Convergence and Integration 151
    Uniform Convergence and Differentiation 152
    Equicontinuous Families of Functions 154
    The Stone-Weierstrass Theorem 159
    Exercises 165
    Chapter 8 Some Special Functions 172
    Power Series 172
    The Exponential and Logarithmic Functions 178
    The Trigonometric Functions 182
    The Algebraic Completeness of the Complex Field 184
    Fourier Series 185
    The Gamma Function 192
    Exercises 196
    Chapter 9 Functions of Several Variables 204
    Linear Transformations 204
    Differentiation 211
    The Contraction Principle 220
    The Inverse Function Theorem 221
    The Implicit Function Theorem 223
    The Rank Theorem 228
    Determinants 231
    Derivatives of Higher Order 235
    Differentiation of Integrals 236
    Exercises 239
    Chapter 10 Integration of Differential Forms 245
    Integration 245
    Primitive Mappings 248
    Partitions of Unity 251
    Change of Variables 252
    Differential Forms 253
    Simplexes and Chains 266
    Stokes’ Theorem 273
    Closed Forms and Exact Forms 275
    Vector Analysis 280
    Exercises 288
    Chapter 11 The Lebesgue Theory 300
    Set Functions 300
    Construction of the Lebesgue Measure 302
    Measure Spaces 310
    Measurable Functions 310
    Simple Functions 313
    Integration 314
    Comparison with the Riemann Integral 322
    Integration of Complex Functions 325
    Functions of Class [WTHT]L[WT]\+2 325
    Exercises 332
    Bibliography 335
    List of Special Symbols 337
    Index 339