深度学习框架PyTorch:入门与实践(第2版)
¥159.00定价
作者: 王博
出版时间:2024-04
出版社:电子工业出版社
- 电子工业出版社
- 9787121437519
- 1-6
- 512206
- 48253629-9
- 平塑勒
- 16开
- 2024-04
- 458
- 344
- 计算机科学与技术
- 本科 研究生及以上
内容简介
本书从多维数组Tensor开始,循序渐进地介绍PyTorch各方面的基础知识,并结合深度学习中的经典应用,带领读者从零开始完成几个经典而有趣的实际项目,包括动漫头像生成、风格迁移、自动写诗以及目标检测。本书还介绍了PyTorch的几个高级扩展,包括向量化计算、分布式加速以及CUDA扩展。本书既适合深度学习的初学者及第一次接触PyTorch的研究人员阅读,也适合有一定PyTorch使用经验的用户阅读,帮助他们建立对PyTorch的基本认识,提高使用PyTorch框架解决实际问题的能力。
目录
第 1 章 深度学习框架简介 1__eol__1.1 深度学习框架编年史. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1__eol__1.2 PyTorch 与 TensorFlow 的对比 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6__eol__1.3 为什么选择 PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8__eol__第 2 章 PyTorch 快速入门 11__eol__2.1 安装与配置 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11__eol__2.1.1 在 Linux 系统下安装 PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11__eol__2.1.2 在 Windows 系统下安装 PyTorch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13__eol__2.1.3 学习工具介绍 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14__eol__2.1.4 服务器开发介绍 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23__eol__2.2 PyTorch 快速入门指南 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23__eol__2.2.1 Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23__eol__2.2.2 autograd:自动微分. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29__eol__2.2.3 神经网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31__eol__2.2.4 小试牛刀:CIFAR-10 分类 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36__eol__2.3 小结. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42__eol__第 3 章 Tensor 和 autograd 43__eol__3.1 Tensor 基础 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43__eol__3.1.1 Tensor 的基本操作. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43__eol__3.1.2 命名张量 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60__eol__3.1.3 Tensor 与 NumPy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61__eol__3.1.4 Tensor 的基本结构. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63__eol__3.1.5 变形记:N 种改变 Tensor 形状的方法 . . . . . . . . . . . . . . . . . . . . . . . . . 65__eol__3.2 小试牛刀:线性回归. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70__eol__3.3 autograd 和计算图基础 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73__eol__3.3.1 autograd 的用法:requires_grad 与 backward . . . . . . . . . . . . . . . . . . . . . 73__eol__3.3.2 autograd 的原理:计算图 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76__eol__3.3.3 扩展 autograd:Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83__eol__3.3.4 小试牛刀:利用 autograd 实现线性回归 . . . . . . . . . . . . . . . . . . . . . . . . 84__eol__3.4 小结. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87__eol__第 4 章 神经网络工具箱 nn 89__eol__4.1 nn.Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89__eol__4.2 常用的神经网络层 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93__eol__4.2.1 图像相关层 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93__eol__4.2.2 激活函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97__eol__4.2.3 构建神经网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98__eol__4.2.4 循环神经网络 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101__eol__4.2.5 损失函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102__eol__4.3 nn.functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .