- 高等教育出版社
- 9787040503043
- 1版
- 227559
- 46253997-4
- 精装
- 16开
- 2018-09
- 350
- 180
- 理学
- 数学
- O187.2
- 数学类
- 研究生及以上
前辅文
Volume I
Chapter I Vector bundle valued harmonic forms
1 An analogy of de Rham’s theorem
2 Harmonic ρ-forms
3 The type decomposition of harmonic ρ-forms
4 Mountjoy’s abelian varieties
5 Commutativity with ¢A
6 Proof of commutativity theorems
7 A wider frame: spherical functions
8 An example: G = SL(2,R)
9 Other examples, and discussions
Chapter II Fibre variety over a symmetric space whose fibres are abelian varieties
1 A fibre bundle V π −→U
2 Cohomology groups of V (Part I)
3 Cohomology groups of V (Part II)
4 Up-side-down operator θ, and the θ-invariant subspaces of H2(V )
5 Fibre variety over a symmetric space whose fibres are abelian varieties
6 Algebraic family of polarized abelian varieties
7 Minimality of quotient varieties
Appendix I A letter of AndréWeil
Appendix II Holomorphic imbeddings of symmetric domains into a Siegel space
References for volume I
Volume II
Chapter III Hecke operators
1 Goldman adelilzation
2 Hecke operator operating on Hp (X,Γ,ρ) etc
3 Hecke operator operating on (X ×F)
4 Hecke operators as algebraic correspondences
Chapter IV Number theory of automorphic forms
1 A fibre variety over an algebraic curveU = Γ\X
2 Harmonic forms on V , and the trace formulas
3 Zeta-function of e V p
4 Congruence Artin - L-functions
5 Hecke polynomials as L-functions
References for volume II