注册 登录 进入教材巡展
#

出版时间:2014-10

出版社:中国矿业大学出版社

以下为《矿用充填堵漏风新型复合泡沫的研制(英文版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 中国矿业大学出版社
  • 9787564625573
  • 186015
  • 2014-10
  • TD75
内容简介

  胡相明著的《矿用充填堵漏风新型复合泡沫的研制(英文版)》针对现有矿用有机固化泡沫的不足,研制了一种充填堵漏风新型复合泡沫,该泡沫融合了聚氨酯泡沫、酚醛泡沫和脲醛泡沫的密闭性好、抗压强度高、难燃、成本低等优点,克服了它们的不足。首先合成了低成本的酚-脲-醛发泡树脂,优化了“酚-脲-醛”树脂的催化体系,并初步制备酚-脲-醛泡沫;然后,通过外加增韧剂和增强剂对“酚-脲-醛”泡沫进行改性,提高复合泡沫的综合性能;最后,对比分析复合泡沫、聚氨酯泡沫、酚醛泡沫和脲醛泡沫间的性能差异,阐明复合泡沫的性能优势,并通过现场应用验证复合泡沫的堵漏风特性。煤矿井下的工程实践表明,复合泡沫具有充填密闭效果好、施工简单、安全可靠、成本低等特点,极具广泛的应用前景。

目录
1 Introduction
 1.1 Research purpose
 1.2 Research status of air-leakage blocking materials for mine
  1.2.1 Inorganic air-leakage blocking materials
  1.2.2 Organic air-leakage blocking material
 1.3 Research objectives and content
 1.4 Experimental
  1.4.1 Basic properties of phenol-urea-formaldehyde foaming resin
  1.4.2 Optimization of the surfactant
  1.4.3 Toughening of phenol-urea-formaldehyde foam
  1.4.4 Enhancement of flame-retardant performance of glass fiber/nano-clay composite foam
  1.4.5 Comparison of the properties of composite foam with common organic curing foam and its application
 1.5 Technical route
 References
2 Synthesis and Characterization of Phenol-urea-formaldehyde Foaming Resin Used to Block Air-leakage in Mining
 2.1 Experimental
  2.1.1 Starting materials
  2.1.2 Experimental design, resin synthesis and foams preparation
  2.1.3 Test methods
 2.2 Results and analysis
  2.2.1 Influencing factors of the PUF foaming resin
  2.2.2 FT-IR analysis of PUF resin
  2.2.3 13C NMR analysis of PUF resin
  2.2.4 Synthesis mechanism of PUF resin
  2.2.5 Foaming properties of PUF resin
 2.3 Conclusions
 References
3 Effects of Surfactants on the Mechanical Properties, Microstructure,and Flame Resistance of Phenol-urea-formaldehyde Foam
 3.1 Experimental
  3.1.1 Experimental materials
  3.1.2 Preparation of phenol-urea-formaldehyde resin
  3.1.3 Preparation of phenol-urea-formaldehyde foam
  3.1.4 Determination of foam properties
 3.2 Results and analysis
  3.2.1 Surface tension of phenol-urea-formaldehyde resins
  3.2.2 Foaming dynamics
  3.2.3 Foaming temperature
  3.2.4 Foaming capacity
  3.2.5 Microstructure of the foam
  3.2.6 Compressive strength
  3.2.7 Flame resistance
 3.3 Conclusions
 References
4 Effect of Polyethylene Glycol on the Mechanical Property, Microstructure,Thermal Stability, and Flame Resistance of Phenol-urea-formaldehyde Foams
 4.1 Experimental
  4.1.1 Raw materials
  4.1.2 Synthesis of phenol-urea-formaldehyde resin
  4.1.3 Preparation of phenol-urea-formaldehyde foam
  4.1.4 Characterization and property determination of foams
 4.2 Results and discussions
  4.2.1 FT-IR spectroscopy of resin
  4.2.2 Foam density
  4.2.3 Pulverization rate
  4.2.4 Impact strength
  4.2.5 Compression strength
  4.2.6 Cell microstructure
  4.2.7 Thermogravimetric property
  4.2.8 Flame retardant behavior
 4.3 Conclusions
 References
5 Flame Retarflant, Thermal and Mechanical Properties of Glass Fiber/Nano-clay Reinforced Phenol-urea-formaldehyde Foam
 5.1 Materials and methods
  5.1.1 Materials
  5.1.2 Preparation of glass fiber/nano-clay composite foam
  5.1.3 Property test
 5.2 Results and discussions
  5.2.1 Density
  5.2.2 Pulverization rate
  5.2.3 Impact strength
  5.2.4 Compression strength
  5.2.5 Cell microstructure
  5.2.6 Flame retardant behavior
  5.2.7 Thermogravimetric analysis
 5.3 Conclusions
 References
6 Properties and Applications of Novel Composite Foam for Blocking Air-leakage in Coal Mine
 6.1 Materials and methods
  6.1.1 Materials
  6.1.2 Preparation of composite foams
  6.1.3 Mechanical tests
 6.2 Results and discussions
  6.2.1 Foaming time and curing time
  6.2.2 Foaming temperature and foaming multiple
  6.2.3 Shrinkage and pulverization rate
  6.2.4 Compressive strength and impact strength
  6.2.5 Microstructures
  6.2.6 Thermal stability
  6.2.7 Flame resistance and antistatic property
  6.2.8 Combustion property
 6.3 Practical application of new composite foam in coal mine
  6.3.1 Goaf sealing using composite foam
  6.3.2 Outline of the mining area
  6.3.3 Construction program
  6.3.4 Filling high caving area using composite foam
 6.4 Conclusions
 References