- 科学出版社
- 9787030669872
- 31
- 474217
- 平装胶订
- B5
- 2021-01
- 180
- O
内容简介
本书是一本以介绍现代概率论基础理论和方法为主的概率论教材。共分三部分。第1章和第2章为测度论,用较短的篇幅完整地叙述了测度与积分的一般理论,包括了一般测度、Lebesgue-Stieltjes测度、Lebesgue测度、积分与期望的定义及单调收敛定理、Fatou引理、Lebesgue控制收敛定理、Fubini定理等主要的测度与积分结果。第3章和第4章为极限论,介绍了概率论和统计中的常用的分布、分布函数、特征函数和四种收敛性,并侧重于中心极限定理和各种大数定律及其证明。第5章为鞅论,从经典条件概率出发引入一般条件期望的定义,利用广义的Radon-Nikodym定理证明了其存在性,以Markov链作为其应用,介绍了以条件期望为基础的鞅的基本概念和结果。