数字视频处理(英文版)(第2版) / 国外电子与电气工程技术丛书
¥99.00定价
作者: [土]A.缪拉·泰卡尔普
出版时间:2016-04
出版社:机械工业出版社
- 机械工业出版社
- 9787111532866
- 2版
- 110150
- 44217480-1
- 平装
- 16开
- 2016-04
- 828
- 552
- 工学
- 信息与通信工程
- TN941.3
- 电气类
- 本科
内容简介
多年来,《Digital Video Processing》都是无数工科学生和专业人士深入学习数字图像和视频处理技术的权威指南。在《Digital Video Processing》第2版中,作者对图像处理、计算机视觉、视频压缩等领域的重大发展进行了探讨,也对诸如数字电影、超高分辨率视频、3D视频等新应用进行介绍。
A.缪拉·泰卡尔普著的《数字视频处理》内容详尽、组织均衡、论述严谨。全面覆盖了图像滤波、运动估计、跟踪、分割、视频滤波和压缩等诸多方向。书中对各章节的习题都进行了更新,并加入了新的MATLAB项目,已使本书成为一本全新的教材。
A.缪拉·泰卡尔普著的《数字视频处理》内容详尽、组织均衡、论述严谨。全面覆盖了图像滤波、运动估计、跟踪、分割、视频滤波和压缩等诸多方向。书中对各章节的习题都进行了更新,并加入了新的MATLAB项目,已使本书成为一本全新的教材。
目录
1 Multi-Dimensional Signals and Systems
1.1 Multi-Dimensional Signals
1.1.1 Finite-Extent Signals and Periodic Signals
1.1.2 Symmetric Signals
1.1.3 Special Multi-Dimensional Signals
1.2 Multi-Dimensional Transforms
1.2.1 Fourier Transform of Continuous Signals
1.2.2 Fourier Transform of Discrete Signals
1.2.3 Discrete Fourier Transform (DFT)
1.2.4 Discrete Cosine Transform (DCT)
1.3 Multi-Dimensional Systems
1.3.1 Impulse Response and D Convolution
1.3.2 Frequency Response
1.3.3 FIR Filters and Symmetry
1.3.4 IIR Filters and Partial Difference Equations
1.4 Multi-Dimensional Sampling Theory
1.4.1 Sampling on a Lattice
1.4.2 Spectrum of Signals Sampled on a Lattice
1.4.3 Nyquist Criterion for Sampling on a Lattice
1.4.4 Reconstruction from Samples on a Lattice
1.5 Sampling Structure Conversion
References
Exercises
Problem Set
2 MATLAB Exercises
2 Digital Images and Video
2.1 Human Visual System and Color
2.1.1 Color Vision and Models
2.1.2 Contrast Sensitivity
2.1.3 Spatio-Temporal Frequency Response
2.1.4 Stereo/Depth Perception
2.2 Digital Video
2.2.1 Spatial Resolution and Frame Rate
2.2.2 Color, Dynamic Range, and Bit-Depth
2.2.3 Color Image Processing
2.2.4 Digital-Video Standards
2.3 D Video
2.3.1 D-Display Technologies
2.3.2 Stereoscopic Video
2.3.3 Multi-View Video
2.4 Digital-Video Applications
2.4.1 Digital TV
2.4.2 Digital Cinema
2.4.3 Video Streaming over the Internet
2.4.4 Computer Vision and Scene/Activity Understanding
2.5 Image and Video Quality
2.5.1 Visual Artifacts
2.5.2 Subjective Quality Assessment
2.5.3 Objective Quality Assessment
References
3 Image Filtering
3.1 Image Smoothing
3.1.1 Linear Shift-Invariant Low-Pass Filtering
3.1.2 Bi-Lateral Filtering
3.2 Image Re-Sampling and Multi-Resolution Representations
3.2.1 Image Decimation
3.2.2 Interpolation
3.2.3 Multi-Resolution Pyramid Representations
3.2.4 Wavelet Representations
3.3 Image-Gradient Estimation, Edge and Feature Detection
3.3.1 Estimation of the Image Gradient
3.3.2 Estimation of the Laplacian
3.3.3 Canny Edge Detection
3.3.4 Harris Corner Detection
3.4 Image Enhancement
3.4.1 Pixel-Based Contrast Enhancement
3.4.2 Spatial Filtering for Tone Mapping and Image Sharpening
3.5 Image Denoising
3.5.1 Image and Noise Models
3.5.2 Linear Space-Invariant Filters in the DFT Domain
3.5.3 Local Adaptive Filtering
3.5.4 Nonlinear Filtering: Order-Statistics, Wavelet Shrinkage, and Bi-Lateral Filtering
3.5.5 Non-Local Filtering: NL-Means and BM3D
3.6 Image Restoration
3.6.1 Blur Models
3.6.2 Restoration of Images Degraded by Linear Space-Invariant Blurs
3.6.3 Blind Restoration – Blur Identification
3.6.4 Restoration of Images Degraded by Space-Varying Blurs
3.6.5 Image In-Painting
References
Exercises
Problem Set
MATLAB Exercises
MATLAB Resources
4 Motion Estimation
4.1 Image Formation
4.1.1 Camera Models
4.1.2 Photometric Effects of D Motion
4.2 Motion Models
4.2.1 Projected Motion vs. Apparent Motion
4.2.2 Projected D Rigid-Motion Models
4.2.3 D Apparent-Motion Models
4.3 D Apparent-Motion Estimation
4.3.1 Sparse Correspondence, Optical-Flow Estimation, and Image-Registration Problems
4.3.2 Optical-Flow Equation and Normal Flow
4.3.3 Displaced-Frame Difference
4.3.4 Motion Estimation is Ill-Posed: Occlusion and Aperture Problems
1.1 Multi-Dimensional Signals
1.1.1 Finite-Extent Signals and Periodic Signals
1.1.2 Symmetric Signals
1.1.3 Special Multi-Dimensional Signals
1.2 Multi-Dimensional Transforms
1.2.1 Fourier Transform of Continuous Signals
1.2.2 Fourier Transform of Discrete Signals
1.2.3 Discrete Fourier Transform (DFT)
1.2.4 Discrete Cosine Transform (DCT)
1.3 Multi-Dimensional Systems
1.3.1 Impulse Response and D Convolution
1.3.2 Frequency Response
1.3.3 FIR Filters and Symmetry
1.3.4 IIR Filters and Partial Difference Equations
1.4 Multi-Dimensional Sampling Theory
1.4.1 Sampling on a Lattice
1.4.2 Spectrum of Signals Sampled on a Lattice
1.4.3 Nyquist Criterion for Sampling on a Lattice
1.4.4 Reconstruction from Samples on a Lattice
1.5 Sampling Structure Conversion
References
Exercises
Problem Set
2 MATLAB Exercises
2 Digital Images and Video
2.1 Human Visual System and Color
2.1.1 Color Vision and Models
2.1.2 Contrast Sensitivity
2.1.3 Spatio-Temporal Frequency Response
2.1.4 Stereo/Depth Perception
2.2 Digital Video
2.2.1 Spatial Resolution and Frame Rate
2.2.2 Color, Dynamic Range, and Bit-Depth
2.2.3 Color Image Processing
2.2.4 Digital-Video Standards
2.3 D Video
2.3.1 D-Display Technologies
2.3.2 Stereoscopic Video
2.3.3 Multi-View Video
2.4 Digital-Video Applications
2.4.1 Digital TV
2.4.2 Digital Cinema
2.4.3 Video Streaming over the Internet
2.4.4 Computer Vision and Scene/Activity Understanding
2.5 Image and Video Quality
2.5.1 Visual Artifacts
2.5.2 Subjective Quality Assessment
2.5.3 Objective Quality Assessment
References
3 Image Filtering
3.1 Image Smoothing
3.1.1 Linear Shift-Invariant Low-Pass Filtering
3.1.2 Bi-Lateral Filtering
3.2 Image Re-Sampling and Multi-Resolution Representations
3.2.1 Image Decimation
3.2.2 Interpolation
3.2.3 Multi-Resolution Pyramid Representations
3.2.4 Wavelet Representations
3.3 Image-Gradient Estimation, Edge and Feature Detection
3.3.1 Estimation of the Image Gradient
3.3.2 Estimation of the Laplacian
3.3.3 Canny Edge Detection
3.3.4 Harris Corner Detection
3.4 Image Enhancement
3.4.1 Pixel-Based Contrast Enhancement
3.4.2 Spatial Filtering for Tone Mapping and Image Sharpening
3.5 Image Denoising
3.5.1 Image and Noise Models
3.5.2 Linear Space-Invariant Filters in the DFT Domain
3.5.3 Local Adaptive Filtering
3.5.4 Nonlinear Filtering: Order-Statistics, Wavelet Shrinkage, and Bi-Lateral Filtering
3.5.5 Non-Local Filtering: NL-Means and BM3D
3.6 Image Restoration
3.6.1 Blur Models
3.6.2 Restoration of Images Degraded by Linear Space-Invariant Blurs
3.6.3 Blind Restoration – Blur Identification
3.6.4 Restoration of Images Degraded by Space-Varying Blurs
3.6.5 Image In-Painting
References
Exercises
Problem Set
MATLAB Exercises
MATLAB Resources
4 Motion Estimation
4.1 Image Formation
4.1.1 Camera Models
4.1.2 Photometric Effects of D Motion
4.2 Motion Models
4.2.1 Projected Motion vs. Apparent Motion
4.2.2 Projected D Rigid-Motion Models
4.2.3 D Apparent-Motion Models
4.3 D Apparent-Motion Estimation
4.3.1 Sparse Correspondence, Optical-Flow Estimation, and Image-Registration Problems
4.3.2 Optical-Flow Equation and Normal Flow
4.3.3 Displaced-Frame Difference
4.3.4 Motion Estimation is Ill-Posed: Occlusion and Aperture Problems