注册 登录 进入教材巡展
#
  • #

出版社:中南大学出版社

以下为《工程地质实践教程》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 中南大学出版社
  • 9787548711353
  • 78389
  • 0050164405-8
  • 工学
  • 地质资源与地质工程
  • P642
  • 土木工程
  • 本科
内容简介
郑洲顺主编的《高等数学》分上下两册,上册内容包括:函数与极限、一元函数微分学、一元函数积分学、无穷级数;上册的函数与极限由郑洲顺、刘碧玉编写,一元函数微分学由秦宣云编写,一元函数积分学部分由任叶庆、张鸿雁编写,无穷级数由张鸿雁、任叶庆、李军英编写。
目录
第1章  函数与极限
  1.1  函数及其性质
    1.1.1  集合概念
    1.1.2  集合的运算
    1.1.3  区间与邻域
    1.1.4  映射
    1.1.5  函数的概念
    1.1.6  函数的特性
    1.1.7  反函数与复合函数
    1.1.8  函数的四则运算
    1.1.9  初等函数
    习题1.1
  1.2  数列的极限
    1.2.1  数列极限的定义
    1.2.2  数列极限的性质
    习题1.2
  1.3  函数的极限
    1.3.1  函数极限的定义
    1.3.2  函数极限的性质
    习题1.3
  1.4  极限的运算法则
    1.4.1  四则运算法则
    1.4.2  复合运算法则
    习题1.4
  1.5  极限存在准则  两个重要极限
    1.5.1  夹逼原理
    1.5.2  单调有界准则
    1.5.3  Cauchy收敛准则
    1.5.4  两个重要极限
    习题1.5
  1.6  无穷小与无穷大
    1.6.1  无穷小
    1.6.2  无穷大
    1.6.3  无穷小与无穷大的运算
    1.6.4  无穷小的比较
    习题1.6
  1.7  函数的连续性
    1.7.1  连续函数的定义
    1.7.2  函数的间断点及其分类
    1.7.3  连续函数的运算与初等函数的连续性
    1.7.4  闭区间上连续函数的性质
    1.7.5  函数的一致连续性
    习题1.7
    习题1
第2章  一元函数微分学
  2.1  导数及微分
    2.1.1  引例
    2.1.2  导数概念
    2.1.3  导数的几何意义
    2.1.4  可导与连续的关系
    2.1.5  求导数的例题
    2.1.6  函数的和、积、商的导数
    2.1.7  反函数的导数
    2.1.8  复合函数的导数
    2.1.9  高阶导数
    2.1.10  隐函数的求导法则
    2.1.11  对数求导法
    2.1.12  参数方程所确定的函数的导数
    2.1.13  微分概念
    2.1.14  微分公式与微分运算法则
    2.1.15  微分应用于近似计算及误差的估计
    习题2.1
  2.2  微分中值定理
    2.2.1  微分中值定理
    2.2.2  Taylor公式
    2.2.3  L'Hospital法则
    习题2.2
  2.3  导数的应用
    2.3.1  函数的单调性的判定
    2.3.2  函数的极值及其求法
    2.3.3  最大值及最小值的求法
    2.3.4  曲线的凹凸性及其判定法
    2.3.5  曲线的拐点及其求法
    2.3.6  曲线的渐近线
    2.3.7  函数图形的描绘方法
    2.3.8  弧微分  曲率
    2.3.9  曲率圆与曲率半径
    习题2.3
  习题2
第3章  一元函数积分学
  3.1  不定积分
    3.1.1  原函数与不定积分的概念
    3.1.2  不定积分的性质
    3.1.3  基本积分表
    3.1.4  换元积分法
    3.1.5  分部积分法
    3.1.6  有理函数的分解
    3.1.7  有理函数的积分
    3.1.8  三角函数的有理式的积分
    3.1.9  简单无理函数的积分
    3.1.10  关于积分问题的一些补充说明
    习题3.1
  3.2  定积分
    3.2.1  曲边梯形的面积  变力所作的功
    3.2.2  定积分的概念
    3.2.3  定积分的性质  中值定理
    3.2.4  Newton-Leibniz公式
    3.2.5  用换元法计算定积分
    3.2.6  用分部积分法计算定积分
    3.2.7  广义积分
    习题3.2
  3.3  定积分的应用
    3.3.1  平面图形的面积
    3.3.2  体积
    3.3.3  平面曲线的弧长
    3.3.4  定积分在物理、力学上的应用
    习题3.3
    习题3
第4章  无穷级数
  4.1  正项级数
    4.1.1  常数项级数概念
    4.1.2  常数项级数的基本性质
    4.1.3  正项级数及其审敛法
    习题4.1
  4.2  交错级数与任意项级数
    4.2.1  交错级数及其审敛法
    4.2.2  条件收敛与绝对收敛
    习题4.2
  4.3  幂级数
    4.3.1  函数项级数的概念
    4.3.2  幂级数及其收敛半径
    4.3.3  幂级数的运算性质
    4.3.4  幂级数和函数性质
    习题4.3
  4.4  函数展开成幂级数
    4.4.1  Taylor级数
    4.4.2  函数展开成幂级数
    4.4.3  函数展开成幂级数的运用
    习题4.4
  4.5  Fourier级数
    4.5.1  三角级数、三角函数系的正交性
    4.5.2  周期为2π的周期函数的Fourier级数
    4.5.3  周期为2l的周期函数的Fourier级数
    4.5.4  Fourier级数的复数形式
    习题4.5
  4.6  函数展开成正弦级数与余弦级数
    习题4.6
    习题4
附录
  附录一  常用的初等数学公式
  附录二  常用的平面曲线图形
  附录三  积分表
习题参考答案
  第1章
  第2章
  第3章
  第4章
参考文献