注册 登录 进入教材巡展
#
  • #
  • #

出版时间:2017-01

出版社:高等教育出版社

以下为《单复变函数论(第三版)(影印版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040469073
  • 1版
  • 74145
  • 45245544-7
  • 精装
  • 16开
  • 2017-01
  • 710
  • 504
  • 理学
  • 数学
  • O174.51
  • 数学类
  • 研究生(硕士、EMBA、MBA、MPA、博士)
作者简介

Robert E. Greene,美国加州大学洛杉矶分校 (University of California, Los Angeles) 数学系教授,主要研究方向为常微分方程、复分析等,出版多部学术论文与专著。

Steven G. Krantz,美国华盛顿大学 (Washington University) 数学系教授,主要研究方向为复变量、调和分析、偏微分方程、微分几何、李群等,出版多部学术论文与专著。 

查看全部
内容简介

复分析是数学最中心的学科之一,不但它自身引人入胜,丰富多彩,而且在多种其他数学学科(纯数学和应用数学)中都非常有用。本书的与众不同之处在于它从多变量实微积分中直接发展出复变量。当每一个新概念引进时,它总对应了实分析和微积分中相应的概念,本书配有丰富的例题和习题来说明此点。

作者有条不紊地将分析从拓扑中分离出来,从柯西定理的证明中可见一斑。本书分几章讨论专题,如对特殊函数的完整处理、素数定理和Bergman核。作者还处理了H p空间,以及共形映射边界光滑性的Painlevé定理。

本书可用作研究生一年级的复分析教材,是一本很吸引人且现代的复分析导引,它反映了作者们作为数学家和写作者的专业素质。

目录
Preface to the Third Edition
Preface to the Second Edition
Preface to the First Edition
Acknowledgments

Chapter 1. Fundamental Concepts
1.1. Elementary Properties of the Complex Numbers
1.2. Further Properties of the Complex Numbers
1.3. Complex Polynomials
1.4. Holomorphic Functions, the Cauchy-Riemann Equations, and Harmonic Functions
1.5. Real and Holomorphic Antiderivatives
Exercises

Chapter 2. Complex Line Integrals
2.1. Real and Complex Line Integrals
2.2. Complex Differentiability and Conformality
2.3. Antiderivatives Revisited
2.4. The Cauchy Integral Formula and the Cauchy Integral Theorem
2.5. The Cauchy Integral Formula: Some Examples
2.6. An Introduction to the Cauchy Integral Theorem and the Cauchy Integral Formula for More General Curves
Exercises

Chapter 3. Applications of the Cauchy Integral
3.1. Differentiability Properties of Holomorphic Functions
3.2. Complex Power Series
3.3. The Power Series Expansion for a Holomorphic Function
3.4. The Cauchy Estimates and Liouville's Theorem
3.5. Uniform Limits of Holomorphic Functions
3.6. The Zeros of a Holomorphic Function
Exercises

Chapter 4. Meromorphic Functions and Residues
4.1. The Behavior of a Holomorphic Function Near an Isolated Singularity
4.2. Expansion around Singular Points
4.3. Existence of Laurent Expansions
4.4. Examples of Laurent Expansions
4.5. The Calculus of Residues
4.6. Applications of the Calculus of Residues to the Calculation of Definite Integrals and Sums
4.7. Meromorphic Functions and Singularities at Infinity
Exercises

Chapter 5. The Zeros of a Holomorphic Function
5.1. Counting Zeros and Poles
5.2. The Local Geometry of Holomorphic Functions
5.3. Further Results on the Zeros of Holomorphic Functions
5.4. The Maximum Modulus Principle
5.5. The Schwarz Lemma
Exercises

Chapter 6. Holomorphic Functions as Geometric Mappings
6.1. Biholomorphic Mappings of the Complex Plane to Itself
6.2. Biholomorphic Mappings of the Unit Disc to Itself
6.3. Linear Fractional Transformations
6.4. The Riemann Mapping Theorem: Statement and Idea of Proof
6.5. Normal Families
6.6. Holomorphically Simply Connected Domains
6.7. The Proof of the Analytic Form of the Riemann Mapping Theorem
Exercises

Chapter 7. Harmonic Functions
7.1. Basic Properties of Harmonic Functions
7.2. The Maximum Principle and the Mean Value Property
7.3. The Poisson Integral Formula
7.4. Regularity of Harmonic Functions
7.5. The Schwarz Reflection Principle
7.6. Harnack's Principle
7.7. The Dirichlet Problem and Subharmonic Functions
7.8. The Perrbn Method and the Solution of the Dirichlet Problem
7.9. Conformal Mappings of Annuli
Exercises

Chapter 8. Infinite Series and Products
8.1. Basic Concepts Concerning Infinite Sums and Products
8.2. The Weierstrass Factorization Theorem
8.3. The Theorems of Weierstrass and Mittag-Leffler: Interpolation Problems
Exercises

Chapter 9. Applications of Infinite Sums and Products
9.1. Jensen's Formula and an Introduction to Blaschke Products
9.2. The Hadamard Gap Theorem
9.3. Entire Functions of Finite Order
Exercises

Chapter 10. Analytic Continuation
10.1. Definition of an Analytic Function Element
10.2. Analytic Continuation along a Curve
10.3. The Monodromy Theorem
10.4. The Idea of a Riemann Surface
10.5. The Elliptic Modular Function and Picard's Theorem
10.6. Elliptic Functions
Exercises

Chapter 11. Topology
11.1. Multiply Connected Domains
11.2. The Cauchy Integral Formula for Multiply Connected Domains
11.3. Holomorphic Simple Connectivity and Topological Simple Connectivity
11.4. Simple Connectivity and Connectedness of the Complement
11.5. Multiply Connected Domains Revisited
Exercises

Chapter 12. Rational Approximation Theory
12.1. Runge's Theorem
12.2. Mergelyan's Theorem
12.3. Some Remarks about Analytic Capacity
Exercises

Chapter 13. Special Classes of Holomorphic Functions
13.1. Schlicht Functions and the Bieberbach Conjecture
13.2. Continuity to the Boundary of Conformal Mappings
13.3. Hardy Spaces
13.4. Boundary Behavior of Functions in Hardy Classes
[An Optional Section for Those Who Know
Elementary Measure Theory]
Exercises

Chapter 14. Hilbert Spaces of Holomorphic Functions, the Bergman Kernel, and Biholomorphic Mappings
14.1. The Geometry of Hilbert Space
14.2. Orthonormal Systems in Hilbert Space
14.3. The Bergman Kernel
14.4. Bell's Condition R
14.5, Smoothness to the Boundary of Conformal Mappings
Exercises

Chapter 15. Special Functions
15.1. The Gamma and Beta Functions
15.2. The Riemann Zeta Function
Exercises

Chapter 16. The Prime Number Theorem
16.0. Introduction
16.1. Complex Analysis and the Prime Number Theorem
16.2. Precise Connections to Complex Analysis
16.3. Proof of the Integral Theorem
Exercises
APPENDIX A: Real Analysis
APPENDIX B: The Statement and Proof of Goursat's Theorem
References
Index