物理学家用的数学方法 第7版
¥249.00定价
作者: [英]阿夫肯
出版时间:2014-03
出版社:世界图书出版公司
- 世界图书出版公司
- 9787510070754
- 56098
- 2014-03
- O411
内容简介
阿夫肯著的《物理学家用的数学方法(第7版)(精)》是为具有研究生水平的读者编写的一部入门性工具书,语言简练,结构流畅,可读性很强,很受读者欢迎,本书是第7版。本版全面介绍了物理学中常用数学方法,内容涉及物理学中用到的数学内容,包括矢量/张量分析,矩阵,群论,数列与复变函数,各种特殊函数,微分方程,傅里叶分析与积分变换,非线性方法,变分法和概率论等诸多领域,是从事物理学研究和教学人员的案头必备书。 读者对象:物理、数学及相关专业的研究生和科教工作者。
目录
Preface
1 Mathematical Preliminaries
1.1 InfiniteSeries
1.2 Series ofFunctions
1.3 Binomial Theorem
1.4 Mathematical Induction
1.5 Operations on Series Expansions of Functions
1.6 Some Important Series
1.7 Vectors
1.8 Complex Numbers and Functions
1.9 Derivatives andExtrema
1.10 Evaluation oflntegrals
1.1 I Dirac Delta Function
AdditionaIReadings
2 Determinants and Matrices
2.1 Determinants
2.2 Matrices
AdditionaI Readings
3 Vector Analysis
3.1 Review ofBasic Properties
3.2 Vectors in 3-D Space
3.3 Coordinate Transformations
3.4 Rotations in IR3
3.5 Differential Vector Operators
3.6 Differential Vector Operators: Further Properties
3.7 Vectorlntegration
3.8 Integral Theorems
3.9 PotentiaITheory
3.10 Curvilinear Coordinates
AdditionaIReadings
4 Tensors and Differential Forms
4.1 TensorAnalysis
4.2 Pseudotensors, Dual Tensors
4.3 Tensors in General Coordinates
4.4 Jacobians
4.5 DifferentialForms
4.6 DifferentiatingForms
4.7 IntegratingForms
AdditionalReadings
5 Vector Spaces
5.1 Vectors in Function Spaces
5.2 Gram-Schmidt Orthogonalization
5.3 Operators
5.4 SelfAdjointOperators
5.5 Unitaty Operators
5.6 Transformations of Operators
5.7 Invariants
5.8 Summary-Vector Space Notation
AdditionaIReadings
6 Eigenvalue Problems
6.1 EigenvalueEquations
6.2 Matrix Eigenvalue Problems
6.3 Hermitian Eigenvalue Problems
6.4 Hermitian Matrix Diagonalization
6.5 NormaIMatrices
AdditionalReadings
7 Ordinary DifTerential Equations
7.1 Introduction
7.2 First-OrderEquations
7.3 ODEs with Constant Coefficients
7.4 Second-Order Linear ODEs
7.5 Series Solutions-Frobenius ' Method
7.6 OtherSolutions
7.7 Inhomogeneous Linear ODEs
7.8 Nonlinear Differential Equations
Additional Readings
8 Sturm-Liouville Theory
8.1 Introduction
8.2 Hermitian Operators
8.3 ODE Eigenvalue Problems
8.4 Variation Method
8.5 Summary, Eigenvalue Problems
Additional Readings
9 Partial Differential Equations
9.1 Introduction
9.2 First-Order Equations
9.3 Second-Order Equations
9.4 Separation of Variables
9.5 Laplace and Poisson Equations
9.6 Wave Equation
9.7 Heat-Flow, or Diffusion PDE
9.8 Summary
Additional Readings
10 Green's Functions
10.1 One-Dimensional Problems
10.2 Problems in Two and Three Dimensions
Additional Readings
11 Complex Variable Theory
11.1 Complex Variables and Functions
11.2 Cauchy-Riemann Conditions
11.3 Cauchy' s Integral Theorem
11.4 Cauchy' s Integral Formula
11.5 Laurent Expansion
11.6 Singularities
11.7 Calculus of Residues
11.8 Evaluation of Definite Integrals
11.9 Evaluation of Sums
11.10 Miscellaneous Topics
Additional Readings
12 Further Topics in Analysis
12.1 Orthogonal Polynomials
12.2 Bernoulli Numbers
12.3 Euler-Maclaurin Integration Formula
12.4 Dirichlet Series
12.5 Infinite Products
12.6 Asymptotic Series
12.7 Method of Steepest Descents
12.8 Dispersion Relations
Additional Readings
13 Gamma Function
13.1 Definitions, Properties
13.2 Digamma and Polygamma Functions
13.3 The Beta Function
13.4 Stirling's Series
13.5 Riemann Zeta Function
13.6 Other Related Functions
Additional Readings
14 Bessel Functions
14.1 Bessel Functions of the First Kind, ,Iv (x)
14.2 Orthogonality
14.3 Neumann Functions, Bessel Functions of the Second Kind
14.4 Hankel Functions
14.5 Modified Bessel Functions, Iv (x) and Kv (x)
14.6 Asymptotic Expansions
14.7 Spherical Bessel Functions
Additional Readings
15 Legendre Functions
15.1 Legendre Polynomials
15.2 Orthogonality
15.3 Physical Interpretation of Generating Function
15.4 Associated L
1 Mathematical Preliminaries
1.1 InfiniteSeries
1.2 Series ofFunctions
1.3 Binomial Theorem
1.4 Mathematical Induction
1.5 Operations on Series Expansions of Functions
1.6 Some Important Series
1.7 Vectors
1.8 Complex Numbers and Functions
1.9 Derivatives andExtrema
1.10 Evaluation oflntegrals
1.1 I Dirac Delta Function
AdditionaIReadings
2 Determinants and Matrices
2.1 Determinants
2.2 Matrices
AdditionaI Readings
3 Vector Analysis
3.1 Review ofBasic Properties
3.2 Vectors in 3-D Space
3.3 Coordinate Transformations
3.4 Rotations in IR3
3.5 Differential Vector Operators
3.6 Differential Vector Operators: Further Properties
3.7 Vectorlntegration
3.8 Integral Theorems
3.9 PotentiaITheory
3.10 Curvilinear Coordinates
AdditionaIReadings
4 Tensors and Differential Forms
4.1 TensorAnalysis
4.2 Pseudotensors, Dual Tensors
4.3 Tensors in General Coordinates
4.4 Jacobians
4.5 DifferentialForms
4.6 DifferentiatingForms
4.7 IntegratingForms
AdditionalReadings
5 Vector Spaces
5.1 Vectors in Function Spaces
5.2 Gram-Schmidt Orthogonalization
5.3 Operators
5.4 SelfAdjointOperators
5.5 Unitaty Operators
5.6 Transformations of Operators
5.7 Invariants
5.8 Summary-Vector Space Notation
AdditionaIReadings
6 Eigenvalue Problems
6.1 EigenvalueEquations
6.2 Matrix Eigenvalue Problems
6.3 Hermitian Eigenvalue Problems
6.4 Hermitian Matrix Diagonalization
6.5 NormaIMatrices
AdditionalReadings
7 Ordinary DifTerential Equations
7.1 Introduction
7.2 First-OrderEquations
7.3 ODEs with Constant Coefficients
7.4 Second-Order Linear ODEs
7.5 Series Solutions-Frobenius ' Method
7.6 OtherSolutions
7.7 Inhomogeneous Linear ODEs
7.8 Nonlinear Differential Equations
Additional Readings
8 Sturm-Liouville Theory
8.1 Introduction
8.2 Hermitian Operators
8.3 ODE Eigenvalue Problems
8.4 Variation Method
8.5 Summary, Eigenvalue Problems
Additional Readings
9 Partial Differential Equations
9.1 Introduction
9.2 First-Order Equations
9.3 Second-Order Equations
9.4 Separation of Variables
9.5 Laplace and Poisson Equations
9.6 Wave Equation
9.7 Heat-Flow, or Diffusion PDE
9.8 Summary
Additional Readings
10 Green's Functions
10.1 One-Dimensional Problems
10.2 Problems in Two and Three Dimensions
Additional Readings
11 Complex Variable Theory
11.1 Complex Variables and Functions
11.2 Cauchy-Riemann Conditions
11.3 Cauchy' s Integral Theorem
11.4 Cauchy' s Integral Formula
11.5 Laurent Expansion
11.6 Singularities
11.7 Calculus of Residues
11.8 Evaluation of Definite Integrals
11.9 Evaluation of Sums
11.10 Miscellaneous Topics
Additional Readings
12 Further Topics in Analysis
12.1 Orthogonal Polynomials
12.2 Bernoulli Numbers
12.3 Euler-Maclaurin Integration Formula
12.4 Dirichlet Series
12.5 Infinite Products
12.6 Asymptotic Series
12.7 Method of Steepest Descents
12.8 Dispersion Relations
Additional Readings
13 Gamma Function
13.1 Definitions, Properties
13.2 Digamma and Polygamma Functions
13.3 The Beta Function
13.4 Stirling's Series
13.5 Riemann Zeta Function
13.6 Other Related Functions
Additional Readings
14 Bessel Functions
14.1 Bessel Functions of the First Kind, ,Iv (x)
14.2 Orthogonality
14.3 Neumann Functions, Bessel Functions of the Second Kind
14.4 Hankel Functions
14.5 Modified Bessel Functions, Iv (x) and Kv (x)
14.6 Asymptotic Expansions
14.7 Spherical Bessel Functions
Additional Readings
15 Legendre Functions
15.1 Legendre Polynomials
15.2 Orthogonality
15.3 Physical Interpretation of Generating Function
15.4 Associated L