注册 登录 进入教材巡展
#

出版时间:2014-03

出版社:世界图书出版公司

以下为《物理学家用的数学方法 第7版》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 世界图书出版公司
  • 9787510070754
  • 56098
  • 2014-03
  • O411
内容简介
  阿夫肯著的《物理学家用的数学方法(第7版)(精)》是为具有研究生水平的读者编写的一部入门性工具书,语言简练,结构流畅,可读性很强,很受读者欢迎,本书是第7版。本版全面介绍了物理学中常用数学方法,内容涉及物理学中用到的数学内容,包括矢量/张量分析,矩阵,群论,数列与复变函数,各种特殊函数,微分方程,傅里叶分析与积分变换,非线性方法,变分法和概率论等诸多领域,是从事物理学研究和教学人员的案头必备书。 读者对象:物理、数学及相关专业的研究生和科教工作者。
目录
Preface
1 Mathematical Preliminaries
 1.1 InfiniteSeries
 1.2 Series ofFunctions
 1.3 Binomial Theorem
 1.4 Mathematical Induction
 1.5 Operations on Series Expansions of Functions
 1.6 Some Important Series
 1.7 Vectors
 1.8 Complex Numbers and Functions
 1.9 Derivatives andExtrema
 1.10 Evaluation oflntegrals
 1.1 I Dirac Delta Function
 AdditionaIReadings
2 Determinants and Matrices
 2.1 Determinants
 2.2 Matrices
 AdditionaI Readings
3 Vector Analysis
 3.1 Review ofBasic Properties
 3.2 Vectors in 3-D Space
 3.3 Coordinate Transformations
 3.4 Rotations in IR3
 3.5 Differential Vector Operators
 3.6 Differential Vector Operators: Further Properties
 3.7 Vectorlntegration
 3.8 Integral Theorems
 3.9 PotentiaITheory
 3.10 Curvilinear Coordinates
 AdditionaIReadings
4 Tensors and Differential Forms
 4.1 TensorAnalysis
 4.2 Pseudotensors, Dual Tensors
 4.3 Tensors in General Coordinates
 4.4 Jacobians
 4.5 DifferentialForms
 4.6 DifferentiatingForms
 4.7 IntegratingForms
 AdditionalReadings
5 Vector Spaces
 5.1 Vectors in Function Spaces
 5.2 Gram-Schmidt Orthogonalization
 5.3 Operators
 5.4 SelfAdjointOperators
 5.5 Unitaty Operators
 5.6 Transformations of Operators
 5.7 Invariants
 5.8 Summary-Vector Space Notation
 AdditionaIReadings
6 Eigenvalue Problems
 6.1 EigenvalueEquations
 6.2 Matrix Eigenvalue Problems
 6.3 Hermitian Eigenvalue Problems
 6.4 Hermitian Matrix Diagonalization
 6.5 NormaIMatrices
 AdditionalReadings
7 Ordinary DifTerential Equations
 7.1 Introduction
 7.2 First-OrderEquations
 7.3 ODEs with Constant Coefficients
 7.4 Second-Order Linear ODEs
 7.5 Series Solutions-Frobenius ' Method
 7.6 OtherSolutions
 7.7 Inhomogeneous Linear ODEs
 7.8 Nonlinear Differential Equations
 Additional Readings
8 Sturm-Liouville Theory
 8.1 Introduction
 8.2 Hermitian Operators
 8.3 ODE Eigenvalue Problems
 8.4 Variation Method
 8.5 Summary, Eigenvalue Problems
 Additional Readings
9 Partial Differential Equations
 9.1 Introduction
 9.2 First-Order Equations
 9.3 Second-Order Equations
 9.4 Separation of Variables
 9.5 Laplace and Poisson Equations
 9.6 Wave Equation
 9.7 Heat-Flow, or Diffusion PDE
 9.8 Summary
 Additional Readings
10 Green's Functions
 10.1 One-Dimensional Problems
 10.2 Problems in Two and Three Dimensions
 Additional Readings
11 Complex Variable Theory
 11.1 Complex Variables and Functions
 11.2 Cauchy-Riemann Conditions
 11.3 Cauchy' s Integral Theorem
 11.4 Cauchy' s Integral Formula
 11.5 Laurent Expansion
 11.6 Singularities
 11.7 Calculus of Residues
 11.8 Evaluation of Definite Integrals
 11.9 Evaluation of Sums
 11.10 Miscellaneous Topics
 Additional Readings
12 Further Topics in Analysis
 12.1 Orthogonal Polynomials
 12.2 Bernoulli Numbers
 12.3 Euler-Maclaurin Integration Formula
 12.4 Dirichlet Series
 12.5 Infinite Products
 12.6 Asymptotic Series
 12.7 Method of Steepest Descents
 12.8 Dispersion Relations
 Additional Readings
13 Gamma Function
 13.1 Definitions, Properties
 13.2 Digamma and Polygamma Functions
 13.3 The Beta Function
 13.4 Stirling's Series
 13.5 Riemann Zeta Function
 13.6 Other Related Functions
 Additional Readings
14 Bessel Functions
 14.1 Bessel Functions of the First Kind, ,Iv (x)
 14.2 Orthogonality
 14.3 Neumann Functions, Bessel Functions of the Second Kind
 14.4 Hankel Functions
 14.5 Modified Bessel Functions, Iv (x) and Kv (x)
 14.6 Asymptotic Expansions
 14.7 Spherical Bessel Functions
 Additional Readings
15 Legendre Functions
 15.1 Legendre Polynomials
 15.2 Orthogonality
 15.3 Physical Interpretation of Generating Function
 15.4 Associated L