注册 登录 进入教材巡展
#
  • #
  • #

出版时间:2008-01

出版社:高等教育出版社

以下为《微积分(第8版)(改编版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040226645
  • 8版
  • 59102
  • 44259112-9
  • 平装
  • 异16开
  • 2008-01
  • 650
  • 867
  • 理学
  • 数学
  • O172
  • 工学、理学
  • 本科
内容简介

本书是“世界优秀教材中国版”系列教材之一,从Wiley出版公司引进,由国内专家改编。本书强调对概念的理解,包括描述性的直观理解,数值和图像的处理等,以达到严格的数学定义。另外,本书在许多章最后部分给出实际数学模型,有助于提高学生的学习兴趣。改编者根据我国微积分教学计划,删除一些中国学生中学已经学过的内容,如反三角函数、指数函数、对数函数等;对微积分课程中涉及不多的内容进行了简化,如图形计算部分;对附录内容也进行了适当改动。这样使本书更符合我国教学大纲要求,适合中国学生使用。 本书适合高等院校理工科各专业本科学生作为微积分双语教材使用,也适用于自学者。

目录

 前辅文
 chapter one FUNCTIONS
  1.1 Functions
  1.2 Arithmetic Operations on and Composition of Functions
  1.3 Families of Functions
  1.4 Inverse Functions; Inverse Trigonometric Functions
  1.5 Exponential and Logarithmic Functions
  1.6 Parametric Equations
 chapter two LIMITS AND CONTINUITY
  2.1 Limits(An Intuitive Approach)
  2.2 Computing Limits
  2.3 Limits at Infinity; End Behavior of a Function
  2.4 Limits (Discussed More Rigorously)
  2.5 Continuity
  2.6 Continuity of Trigonometric and Inverse Functions
 chapter three THE DERIVATIVE
  3.1 Tangent Lines, Velocity, and General Rates of Change
  3.2 The Derivative Function
  3.3 Techniques of Differentiation
  3.4 The Product and Quotient Rules
  3.5 Derivatives of Trigonometric Functions
  3.6 The Chain Rule
  3.7 Related Rates
  3.8 Local Linear Approximation; Differentials
 chapter four DERIVATIVES OF LOGARITHMIC, EXPONENTIAL, AND INVERSE TRIGONOMETRIC FUNCTIONS
  4.1 Implicit Differentiation
  4.2 Derivatives of Logarithmic Functions
  4.3 Derivatives of Exponential and Inverse Trigonometric Functions
  4.4 L’H pital’s Rule; Indeterminate Forms
 chapter five THE DERIVATIVE IN GRAPHING AND APPLICATIONS
  5.1 Analysis of Functions I: Increase, Decrease, and Concavity
  5.2 Analysis of Functions II: Relative Extrema
  5.3 More on Curve Sketching: Rational Functions; Curves with Cusps and Vertical Tangent Lines; Using Technology
  5.4 Absolute Maxima and Minima
  5.5 Applied Maximum and Minimum Problems
  5.6 Rolle’s Theorem; Mean-Value Theorem
 chapter six INTEGRATION
  6.1 An Overview of the Area Problem
  6.2 The Indefinite Integral
  6.3 Integration by Substitution
  6.4 The Definition of Area as a Limit
  6.5 The Definite Integral
  6.6 The Fundamental Theorem of Calculus
  6.7 Evaluating Definite Integrals by Substitution
  6.8 Logarithmic Functions from the Integral Point of View
 chapter seven APPLICATIONS OF THE DEFINITE INTEGRAL IN GEOMETRY AND ENGINEERING
  7.1 Area Between Two Curves
  7.2 Volumes by Slicing; Disks and Washers
  7.3 Volumes by Cylindrical Shells
  7.4 Length of a Plane Curve
  7.5 Work
  7.6 Fluid Pressure and Force
 chapter eight PRINCIPLES OF INTEGRAL EVALUATION
  8.1 Integration by Parts
  8.2 Trigonometric Integrals
  8.3 Trigonometric Substitutions
  8.4 Integrating Rational Functions by Partial Fractions
  8.5 Improper Integrals
 chapter nine MATHEMATICAL MODELING WITH DIFFERENTIAL EQUATIONS
  9.1 First-Order Differential Equations and Applications
  9.2 Modeling with First-Order Differential Equations
  9.3 Second-Order Linear Homogeneous Differential Equations; The Vibrating Spring
 chapter ten INFINITE SERIES
  10.1 Sequences
  10.2 Monotone Sequences
  10.3 Infinite Series
  10.4 Convergence Tests
  10.5 The Comparison, Ratio, and Root Tests
  10.6 Alternating Series; Conditional Convergence
  10.7 Maclaurin and Taylor Polynomials
  10.8 Maclaurin and Taylor Series; Power Series
  10.9 Convergence of Taylor Series
  10.10 Differentiating and Integrating Power Series
 chapter eleven THREE-DIMENSIONAL SPACE; VECTORS
  11.1 Rectangular Coordinates in 3-Space; Spheres; Cylindrical Surfaces
  11.2 Vectors
  11.3 Dot Product; Projections
  11.4 Cross Product
  11.5 Parametric Equations of Lines
  11.6 Planes in 3-Space
  11.7 Quadric Surfaces
  11.8 Cylindrical and Spherical Coordinates
 chapter twelve VECTOR-VALUED FUNCTIONS
  12.1 Introduction to Vector-Valued Functions
  12.2 Calculus of Vector-Valued Functions
 chapter thirteen PARTIAL DERIVATIVES
  13.1 Functions of Two or More Variables
  13.2 Limits and Continuity
  13.3 Partial Derivatives
  13.4 Differentiability, Differentials, and Local Linearity
  13.5 The Chain Rule
  13.6 Directional Derivatives and Gradients
  13.7 Tangent Planes and Normal Vectors
  13.8 Maxima and Minima of Functions of Two Variables
  13.9 Lagrange Multipliers
 chapter fourteen MULTIPLE INTEGRALS
  14.1 Double Integrals
  14.2 Double Integrals over Nonrectangular Regions
  14.3 Double Integrals in Polar Coordinates
  14.4 Parametric Surfaces; Surface Area
  14.5 Triple Integrals
  14.6 Triple Integrals in Cylindrical and Spherical Coordinates
  14.7 Change of Variables in Double Integrals; Jacobians
 chapter fifteen TOPICS IN VECTOR CALCULUS
  15.1 Vector Fields
  15.2 Line Integrals
  15.3 Independence of Path; Conservative Vector Fields
  15.4 Green’s Theorem
  15.5 Surface Integrals
  15.6 Applications of Surface Integrals; Flux
  15.7 The Divergence Theorem
  15.8 Stokes’ Theorem
 appendix
  SELECTED PROOFS
  ANSWERS TO SELECTED EXERCISES
  GLOSSARY