概率论与数理统计
¥42.00定价
作者: 王学丽,杨建奎等
出版时间:2017-08
出版社:北京邮电大学出版社
- 北京邮电大学出版社
- 9787563551699
- 53223
- 47248689-3
- 2017-08
- 理学
- 数学
- O21
- 数学、统计学
- 本科
内容简介
本书介绍了概率论与数理统计的基本概念、基本理论和方法。内容包括:概率基本 介绍,*变量及其分布,多维*变量及其分布,数学期望,极限理论,抽样分布,参数 估计,假设检验和回归分析。每章课后配有丰富的习题,供学生练习之用。 本书是高校工科、理科(非数学专业)“概率论与数理统计”的双语教材,也可作为高 等学校理工科各专业学生及教师的教材和参考书,还可供科技工作者阅读。
目录
Chapter 1 Introduction to Probability
1.1 Introduction
1.2 Interpretations of Probability
1.3 Set Algebra
1.4 The Definition of Probability
1.5 Finite Sample Spaces
1.6 Geometry Probability Setting
1.7 Conditional Probability
1.8 Independent Events
Chapter 2 Random Variable and Distribution
2.1 Random Variable
2.2 Discrete Distribution
2.3 Continuous Random Variable and Its Distribution
2.4 The Function of a Random Variable
Chapter 3 Multi-Dimensional Random Variable and Distributions
3.1 Multi-Dimensional Random Variable and its Distribution
3.2 Marginal Distribution
3.3 Conditional Distribution
3.4 Independence of Random Variables
3.5 Functions of Two or More Random Variables
Chapter 4 Expectation
4.1 Expectation of Random Variable
4.2 Variance and Moments
4.3 Covariance and Correlation
4.4 Covariance Matrix
Chapter 5 Limit Theorem
5.1 Law of Large Numbers
5.2 the Central Limit Theorem
Chapter 6 Samples and Sampling Distribution
6.1 Random Samples
6.2 Statistics and Numerical Characteristics of Sample
6.3 Sampling Distribution
6.4 Distributions of Sample Mean and Sample Variance
with Normal Distribution
Chapter 7 Estimation of Parameters
7.1 Point Estimation, Moment Estimation and Maximum
Likehood Estimators
7.2 the Evaluation Criteria of Estimators
7.3 Estimation of Intervals
7.4 Interval Estimation of Normal Population Parameters
7.5 One-Sided Confidence Interval
Chapter 8 Testing Hypotheses
8.1 Problem of Testing Hypotheses
8.2 the Testing of Hypotheses of the Mean of the Normal Distribution
8.3 Testing Hypotheses about Variance of Normal Distribution
8.4 Equivalence of Tests and Confidence Sets
8.5 Test of Fit of Population Distribution
8.6 Testing of Hypotheses Using p-value
Chapter 9 Simple Linear Regression
9.1 the Method of Regression
9.2 Estimation and Inference in Simple Linear Regression
Solutions for Exercises
References
1.1 Introduction
1.2 Interpretations of Probability
1.3 Set Algebra
1.4 The Definition of Probability
1.5 Finite Sample Spaces
1.6 Geometry Probability Setting
1.7 Conditional Probability
1.8 Independent Events
Chapter 2 Random Variable and Distribution
2.1 Random Variable
2.2 Discrete Distribution
2.3 Continuous Random Variable and Its Distribution
2.4 The Function of a Random Variable
Chapter 3 Multi-Dimensional Random Variable and Distributions
3.1 Multi-Dimensional Random Variable and its Distribution
3.2 Marginal Distribution
3.3 Conditional Distribution
3.4 Independence of Random Variables
3.5 Functions of Two or More Random Variables
Chapter 4 Expectation
4.1 Expectation of Random Variable
4.2 Variance and Moments
4.3 Covariance and Correlation
4.4 Covariance Matrix
Chapter 5 Limit Theorem
5.1 Law of Large Numbers
5.2 the Central Limit Theorem
Chapter 6 Samples and Sampling Distribution
6.1 Random Samples
6.2 Statistics and Numerical Characteristics of Sample
6.3 Sampling Distribution
6.4 Distributions of Sample Mean and Sample Variance
with Normal Distribution
Chapter 7 Estimation of Parameters
7.1 Point Estimation, Moment Estimation and Maximum
Likehood Estimators
7.2 the Evaluation Criteria of Estimators
7.3 Estimation of Intervals
7.4 Interval Estimation of Normal Population Parameters
7.5 One-Sided Confidence Interval
Chapter 8 Testing Hypotheses
8.1 Problem of Testing Hypotheses
8.2 the Testing of Hypotheses of the Mean of the Normal Distribution
8.3 Testing Hypotheses about Variance of Normal Distribution
8.4 Equivalence of Tests and Confidence Sets
8.5 Test of Fit of Population Distribution
8.6 Testing of Hypotheses Using p-value
Chapter 9 Simple Linear Regression
9.1 the Method of Regression
9.2 Estimation and Inference in Simple Linear Regression
Solutions for Exercises
References