注册 登录 进入教材巡展
#
  • #

出版时间:2009-02

出版社:高等教育出版社

以下为《实数学分析(影印版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040255348
  • 1版
  • 44091
  • 46244740-0
  • 平装
  • 异16开
  • 2009-02
  • 500
  • 226
  • 理学
  • 数学
  • 数学类
  • 本科 研究生(硕士、EMBA、MBA、MPA、博士)
目录
1 Real Numbers 1 Preliminaries 2 Cuts 3 Euclidean Space 4 Cardinality 5* Comparing Cardinalities 6* The Skeleton of Calculus Exercises2 A Taste of Topology 1 Metric Space Concepts 2 Compactness 3 Connectedness 4 Coverings 5 Cantor Sets 6* Cantor Set Lore 7* Completion Exercises3 Functions of a Real Variable 1 Differentiation 2 Riemann Integration 3 Series Exercises4 Function Spaces 1 Uniform Convergence and C0[a, b] 2 Power Series 3 Compactness and Equicontinuity in CO 4 Uniform Approximation in Co 5 Contractions and ODE's 6* Analytic Functions 7* Nowhere Differentiable Continuous Functions 8* Spaces of Unbounded Functions Exercises5 Multivariable Calculus 1 Linear Algebra 2 Derivatives 3 Higher derivatives 4 Smoothness Classes 5 Implicit and Inverse Functions 6* The Rank Theorem 7* Lagrange Multipliers 8 Multiple Integrals 9 Differential Forms 10 The General Stokes' Formula 11* The Brouwer Fixed Point Theorem Appendix A: Perorations of Dieudonne Appendix B: The History of Cavalieri's Principle Appendix C: A Short Excursion into the Complex Field Appendix D: Polar Form Appendix E: Determinants Exercises6 Lebesgue Theory 1 Outer measure 2 Measurability 3 Regularity 4 Lebesgue integrals 5 Lebesgue integrals as limits 6 Italian Measure Theory 7 Vitali coverings and density points 8 Lebesgue's Fundamental Theorem of Calculus 9 Lebesgue's Last Theorem Appendix A: Translations and Nonmeasurable sets Appendix B: The Banach-Tarski Paradox Appendix C: Riemann integrals as undergraphs Appendix D: Littlewood's Three Principles Appendix E: Roundness Appendix F: Money Suggested Reading Bibliography ExercisesIndex