注册 登录 进入教材巡展
#
  • #

出版时间:2004-10-20

出版社:高等教育出版社

以下为《无机化学(第3版)(影印版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040155860
  • 1
  • 248683
  • 平装
  • 16开
  • 2004-10-20
  • 1140
  • 706
  • 理学
  • 化学
内容简介

本书是国外优秀化学教学用书。全书共16章,主要包括无机化学介绍、原子结构、价键理论简介、对称性与群论、分子轨道、酸碱理论、晶体、主族元素、异构体、价键、原子光谱、反应及其机理、有机金属化学、有机金属反应及其机理、主族与有机金属的关联。每章节后有习题,书后有习题解析。并附录常用热力学数据表等内容。

本书体系合理,适用于化学和非化学类专业用做双语教学教材,也可用于教学参考。

目录

 1 INTRODUCTION TO INORGANIC CHEMISTRY
  1-1 What is Inorganic Chemistry?
  1-2 Contrasts with Organic Chemistry
  1-3 Genesis of the Elements (The Big Bang) and Formation of the Earth
  1-4 Nuclear Reactions and Radioactivity
  1-5 Distribution of Elements on Earth
  1-6 The History of Inorganic Chemistry
 2 ATOMIC STRUCTURE
  2-1 Historical Development of Atomic Theory
   2-1-1 The Periodic Table
   2-1-2 Discovery of Subatomic Particles and the BohrAtom
  2-2 The Schrodinger Equation
   2-2-1 The Particle in a Box
   2-2-2 Quantum Numbers and Atomic Wave Functions
   2-2-3 The Auf bau Principle
   2-2-4 Shielding
  2-3 Periodic Properties of Atoms
   2-3-1 Ionization Energy
   2-3-2 ElectronAffinity
   2-3-3 Covalent and Ionic Radii
 3 SIMPLE BONDING THEORY
  3-1 Lewis Electron-Dot Diagrams
   3-1-1 Resonance
   3-1-2 Expanded Shells
   3-1-3 Formal Charge
   3-1-4 Multiple Bonds in Be and B Compounds
  3-2 Valence Shell Electron Pair Repulsion Theory
   3-2-1 Lone Pair Repulsion
   3-2-2 Multiple Bonds
   3-2-3 Electronegativity and Atomic Size Effects
   3-2-4 Ligand Close-Packing
  3-3 Polar Molecules
  3-4 Hydrogen Bonding
 4 SYMMETRY AND GROUP THEORY
  4-1 Symmetry Elements and Operations
  4-2 Point Groups
   4-2-1 Groups of Low and High Symmetry
   4-2-2 Other Groups
  4-3 Properties and Representations of Groups
   4-3-1 Matrices
   4-3-2 Representations of Point Groups
   4-3-3 Character Tables
  4-4 Examples and Applications of Symmetry
   4-4-1 Chirality
   4-4-2 Molecular Vibrations
 5 MOLECULAR ORBITALS
  5-1 Formation of Molecular Orbitals from Atomic Orbitals
   5-1-1 Molecular Orbitals from s Orbitals
   5-1-2 Molecular Orbitals form p Orbitals
   5-1-3 Molecular Orbitals from d Orbitals
   5-1-4 Nonbonding Orbitals and Other Factors
  5-2 Homonuclear Diatomic Molecules
   5-2-1 Molecular Orbitals
   5-2-2 Orbital Mixing
   5-2-3 First and Second Row Molecules
   5-2-4 Photoelectron Spectroscopy
   5-2-5 Correlation Diagrams
  5-3 Heteronuclear Diatomic Molecules
   5-3-1 Polar Bonds
   5-3-2 Ionic Compounds and Molecular Orbitals
  5-4 Molecular Orbitals for Larger Molecules
   5-4-1 FHF-
   5-4-2 C02
   5-4-3 H2O
   5-4-4 NH3
   5-4-5 BF3
   5-4-6 Molecular Shapes
   5-4-7 Hybrid Orbitals
  5-5 Expanded Shells and Molecular Orbitals
 6 ACID-BASE AND DONOR-ACCEPTOR CHEMISTRY
  6-1 Acid-Base Concepts as Organizing Concepts
   6-1-1 History
  6-2 Major Acid-Base Concepts
   6-2-1 Arrhenius Concept
   6-2-2 Bronsted-Lowry Concept
   6-2-3 Solvent System Concept
   6-2-4 Lewis Concept
   6-2-5 Frontier Orbitals and Acid-Base Reactions
   6-2-6 Hydrogen Bonding
   6-2-7 Electronic Spectra (Including Charge Transfer)
  6-3 Hard and Soft Acids and Bases
   6-3-1 Theory of Hard and Soft Acids and Bases
   6-3-2 Quantitative Measures
  6-4 Acid and Base Strength
   6-4-1 Measurement ofAcid-Base Interactions
   6-4-2 Thermodynamic Measurements
   6-4-3 Proton Affinity
   6-4-4 Acidity and Basicity of Binary Hydrogen Compounds
   6-4-5 Inductive Effects
   6-4-6 Strength of Oxyacids
   6-4-7 Acidity of Cations in Aqueous Solution
   6-4-8 Steric Effects 199
   6-4-9 Solvation and Acid-Base Strength
   6-4-10 Nonaqueous Solvents and Acid-Base Strength
   6-4-11 Superacids
 7 THE CRYSTALLINE SOLID STATE
  7-1 Formulas and Structures
   7-1-1 Simple Structures
   7-1-2 Structures of Binary Compounds
   7-1-3 More Complex Compounds
   7-1-4 Radius Ratio
  7-2 Thermodynamics of Ionic Crystal Formation
   7-2-1 Lattice Energy and Madelung Constant
   7-2-2 Solubility, Ion Size (Large-Large and Small-Small), and HSAB
  7-3 Molecular Orbitals and Band Structure
   7-3-1 Diodes, The PhotovoltaicEffect, and Light-Emitting Diodes
  7-4 Superconductivity
   7-4-1 Low-Temperature Superconducting Alloys
   7-4-2 The Theory of Superconductivity (Cooper Pairs)
   7-4-3 High-Temperature Superconductors (PBa2Cu307 and Related Compounds)
  7-5 Bonding in Ionic Crystals
  7-6 Imperfections in Solids
  7-7 Silicates
 8 CHEMISTRY OF THE MAIN GROUP ELEMENTS
  8-1 General Trends in Main Group Chemistry
   8-1-1 Physical Properties
   8-1-2 Electronegativity
   8-1-3 Ionization Energy
   8-1-4 Chemical Properties
  8-2 Hydrogen
   8-2-1 Chemical Properties
  8-3 Group 1 (ⅠA): The Alkali Metals
   8-3-1 The Elements
   8-3-2 Chemical Properties
  8-4 Group 2 (Ⅱ A): The Alkaline Earths
   8-4-1 The Elements
   8-4-2 Chemical Properties
  8-5 Group 13 (ⅢA) 256
   8-5-1 The Elements 256
   8-5-2 Other Chemistry of the Group 13 (IIIA) Elements 260
  8-6 Group 14 (ⅣA) 261
   8-6-1 The Elements 261
   8-6-2 Compounds 267
  8-7 Group 15 (ⅤA) 272
   8-7-1 The Elements 272
   8-7-2 Compounds 274
  8-8 Group 16(Ⅵ A) 279
   8-8-1 The Elements 279
  8-9 Group 17 (ⅦA): The Halogens 285
   8-9-1 The Elements 285
  8-10 Group 18 (ⅧIA): The Noble Gases
   8-10-1 The Elements
   8-10-2 Chemistry
 9 COORDINATION CHEMISTRY I: STRUCTURES AND ISOMERS
  9-1 History
  9-2 Nomenclature
  9-3 Isomerism
   9-3-1 Stereoisomers
   9-3-2 Four-Coordinate Complexes
   9-3-3 Chirality
   9-3-4 Six-Coordinate Complexes
   9-3-5 Combinations of Chelate Rings
   9-3-6 Ligand Ring Conformation
   9-3-7 Constitutional Isomers
   9-3-8 Experimental Separation and Identification ofisomers
  9-4 Coordination Numbers and Structures
   9-4-1 Low Coordination Numbers (CN=1, 2, and 3)
   9-4-2 Coordination Number 4
   9-4-3Coordination Number 5
   9-4-4 Coordination Number6
   9-4-5 Coordination Number 7
   9-4-6 Coordination Number 8
   9-4-7 Larger Coordination Numbers
 10 COORDINATION CHEMISTRY II: BONDING
  10-1 Experimental Evidence for Electronic Structures
   10-1-1 Thermodynamic Data
   10-1-2 Magnetic Susceptibility
   10-1-3 Electronic Spectra
   10-1-4 Coordination Numbers and Molecular Shapes
  10-2 Theories of Electronic Structure
   10-2-1 Terminology
   10-2-2 Historical Background
  10-3 Ligand Field Theory
   10-3-1 Molecular Orbitals for Octahedral Compkxes
   10-3-2 OrbitalSplitting and Electron Spin
   10-3-3 Ligand Field Stabilization Energy
   10-3-4 Pi Bonding
   10-3-5 Square-Planar Complexes
   10-3-6 Tetrahedral Complexes
  10-4 Angular Overlap
   10-4-1 Sigma-Donor Interactions
   10-4-2 Pi-Acceptor Interactions
   10-4-3 Pi-Donor Interactions
   10-4-4 Types of Ligands and the Spectrochemical Series
   10-4-5 Magnitudes of eσ,eπ, and A
  10-5 The Jahn-Teller Effect
  10-6 Four-and Six-Coordinate Preferences
  10-7 Other Shapes
 11 COORDINATION CHEMISTRY III: ELECTRONIC SPECTRA
  11-1 Absorption of Light
   11-1-1 Beer-LambertAbsorption Law
  11-2 Quantum Numbers of Multielectron Atoms
   11-2-1 Spin-Orbit Coupling
  11-3 Electronic Spectra of Coordination Compounds
   11-3-1 Selection Rules
   11-3-2 Correlation Diagrams
   11-3-3 Tanabe-Sugano Diagrams
   11-3-4 Jahn-Teller Distortions and Spectra
   11-3-5 Examples of Applications of Tanabe-Sugano Diagrams: Determining △0 from Spectra
   I1-3-6 Tetrahedral Complexes
   11-3-7 Charge-Transfer Spectra
 12 COORDINATION CHEMISTRY IV: REACTIONS AND MECHANISMS
  12-1 History and Principles
  12-2 Substitution Reactions
   12-2-1 Inert and Labile Compounds
   12-2-2 Mechanisms of Substitution
  12-3 Kinetic Consequences of Reaction Pathways
   12-3-1 Dissociation (D)
   12-3-2 Interchange (I)
   12-3-3 Association (A)
  12-4 Experimental Evidence in Octahedral Substitution
   12-4-1 Dissociation
   12-4-2 Linear Free Energy Relationships
   12-4-3 Associative Mechanisms
   12-4-4 The Conjugate Base Mechanism
   12-4-5 The Kinetic Chelate Effect
  12-5 Stereochemistry of Reactions
   12-5-1 Substitution in trans Complexes
   12-5-2 Substitution in cis Complexes
   12-5-3 Isomerization of Chelate Rings
  12-6 Substitution Reactions of Square-Planar Complexes
   12-6-1 Kinetics and Stereochemistry of Square-Planar Substitutions
   12-6-2 Evidence forAssociative Reactions
  12-7 The trans Effect
   12-7-1 Explanations of the trans Effect
  12-8 Oxidation-Reduction Reactions
   12-8-1 Inner-and Outer-Sphere Reactions
   12-8-2 Conditions for High and Low Oxidation Numbers
  12-9 Reactions of Coordinated Ligands
   12-9-1 Hydrolysis of Esters,Amides,and Peptides
   12-9-2 Template Reactions
   12-9-3 Electrophilic Substitution
 13 ORGANOMETALLIC CHEMISTRY
  13-1 Historical Background
  13-2 Organic Ligands and Nomenclature
  13-3 The 18-Electron Rule
   13-3-1 Counting Electrons
   13-3-2 Why 18 Electrons?
   13-3-3 Square-Planar Complexes
  13-4 Ligands in Organometallic Chemistry
   13-4-1 Carbonyl (CO) Complexes
   13-4-2 Ligands Similar to CO
   13-4-3 Hydride and Dihydrogen Complexes
   13-4-4 Ligands Having ExtendedπSystems
  13-5 Bonding Between Metal Atoms and Organic Π Systems
   13-5-1 LinearπSystems
   13-5-2 CyclicπSystems
   13-5-3 Fullerene Complexes
  13-6 Complexes. Containing M-C,M=C,and M≡C Bonds
   13-6-1 Alkyl and Related Complexes
   13-6-2 Carbene Complexes
   13-6-3 Carbyne (Alkylidyne) Complexes
  13-7 Spectral Analysis and Characterization of Organometallic Complexes
   13-7-1 Infrared Spectra
   13-7-2 NMR Spectra
   13-7-3 Examples of characterization
 14 ORGANOMETALLIC REACTIONS AND CATALYSIS
  14-1 Reactions Involving Gain or Loss of Ligands
   14-1-1 Ligand Dissociation and Substitution
   14-1-2 Oxidative Addition
   14-1-3 Reductive Elimination
   14-1-4 Nucleophilic Displacement
  14-2 Reactions Involving Modification of Ligands
   14-2-1 Insertion
   14-2-2 Carbonyl Insertion (Alkyl Migration)
   14-2-3 1,2 Insertions
   14-2-4 Hydride Elimination
   14-2-5 Abstraction
  14-3 Otganometallic Catalysts
   14-3-1 Example of Catalysis:Catalytic Deuteration
   14-3-2 Hydroforrnylation
   14-3-3 Monsanto Acetic Acid Process
   14-3-4 Wacker(Smidt)Process
   14-3-5 Hydrogenation by Wilkinson's Catalyst
   14-3-6 Olefin Metathesis
  14-4 Heterogeneous Catalysts
   14-4-1 Ziegler-Natta Polymerizations
   14-4-2 Water Gas Reaction
 15 PARALLELS BETWEEN MAIN GROUP AND ORGANOMETALLIC CHEMISTRY
  15-1 Main Group Parallels with Binary Carbonyl Complexes
  15-2 The Isolobal Analogy
   15-2-1 Extensions of the Analogy
   15-2-2 Examples of Applications of the Analogy
  15-3 Metal-Metal Bonds
   15-3-1 Multiple Metal-Metal Bonds
  15-4 Cluster Compounds
   15-4-1 Boranes
   15-4-2 Heteroboranes
   15-4-3 Metallaboranes and Metallacarboranes
   15-4-4 Carbonyl Clusters
   15-4-5 Carbide Clusters
   15-4-6 Additional Comments on Clusters
 16 BIOINORGANIC AND ENVIRONMENTAL CHEMISTRY
  16-1 Porphyrins and Related Complexes
   16-1-1 Iron Porphyrins
   16-1-2 Similar Ring Compounds
  16-2 Other Iron Compounds
  16-3 Zinc and Copper Enzymes
  16-4 Nitrogen Fixation
  16-5 Nitric Oxide
  16-6 Inorganic Medicinal Compounds
   16-6-1 Cisplatin and Related Complexes
   16-6-2 Auranofin and Arthritis Treatment
   16-6-3 Vanadium Complexes in Medicine
  16-7 Study of DNA Using Inorganic Agents
  16-8 Environmental Chemistry
   16-8-1 Metals
   16-8-2 Nonmetals
 APPENDIX A ANSWERS TO EXERCISES
 APPENDIX B-1 IONIC RADII
 APPENDIX B-2 IONIZATION ENERGY
 APPENDIX B-3 ELECTRON AFFINITY
 APPENDIX B-4 ELECTRON EGATIVITY
 APPENDIX B-5 ABSOLUTE HARDNESS PARAMETERS
 APPENDIX B-6 CA, EA, CB, AND EB VALUES
 APPENDIX B-7 LATIMER DIAGRAMS FOR SELECTED ELEMENTS
 APPENDIX C CHARACTER TABLES
 APPENDIX D ELECTRON-DOT DIAGRAMS AND FORMAL CHARGE
 INDEX