拓扑线性空间与算子谱理论
作者: 刘培德
出版时间:2013-07
出版社:高等教育出版社
- 高等教育出版社
- 9787040373783
- 1版
- 43521
- 46253954-5
- 平装
- 16开
- 2013-07
- 260
- 247
- 理学
- 数学
- 数学类
- 研究生及以上
本书是为具有初步泛函分析知识的读者提供的深入一步学习的泛函分析教材或参考书。内容由拓扑线性空间一般理论与算子谱理论两部分组成。全书共包含六章和两个附录,前面三章叙述拓扑线性空间的一般理论,后面三章是关于Banach代数与算子谱理论的,之后介绍了谱理论在算子半群理论与遍历理论中的一些应用。
本书在讲解上述理论知识的同时还选取相当数量的实际例子加以阐释,以期加强基本理论和实际应用之间的相互联系。
前辅文
第一章 拓扑线性空间
线性空间
拓扑线性空间的局部基
有界性、可度量化、完备性
局部凸空间
有限维空间、积空间、商空间
若干例子
习题一
第二章 拓扑线性空间的若干基本定理
一致有界原理
开映射与闭图像定理
HahnBanach延拓定理
习题二
第三章 局部凸空间的共轭理论
弱拓扑
弱*拓扑
Banach空间的共轭、自反性
弱拓扑的几个应用
紧凸集的端点表现与不动点性质
习题三
第四章 Banach代数
Banach代数与理想
Gelfand变换
C*代数
正元与正泛函
习题四
第五章 Hilbert空间上有界算子的谱理论
Hilbert空间与空间上的几类算子
紧算子、Fredholm算子及其谱
紧算子的若干例子
正规算子的谱
极分解、vN代数、GNS构造
习题五
第六章 无界算子的谱理论
闭稠定自伴算子
对称算子的扩张及扰动
无界正规算子的谱
算子半群
Markov过程、遍历定理
习题六
附录A 关于集合论的若干公理
附录B 点集拓扑知识提要
参考书目
名词索引