微分几何:曲线、曲面和流形(第三版)(影印版)
作者: Wolfgang Kuhnel著;Bruce Hunt译
出版时间:2023-03
出版社:高等教育出版社
- 高等教育出版社
- 9787040593150
- 1版
- 458709
- 46254296-0
- 精装
- 16开
- 2023-03
- 703
- 424
- 数学类
- 本科 研究生及以上
前辅文
Chapter 1. Notations and Prerequisites from Analysis
Chapter 2. Curves in IRn
2A Frenet curves in IRn
2B Plane curves and space curves
2C Relations between the curvature and the torsion
2D The Frenet equations and the fundamental theorem of the
local theory of curves
2E Curves in Minkowski space IR
2F The global theory of curves
Exercises
Chapter 3. The Local Theory of Surfaces
3A Surface elements and the first fundamental form
3B The Gauss map and the curvature of surfaces
3C Surfaces of rotation and ruled surfaces
3D Minimal surfaces
3E Surfaces in Minkowski space IR
3F Hypersurfaces in IRn+1
Exercises
Chapter 4. The Intrinsic Geometry of Surfaces
4A The covariant derivative
4B Parallel displacement and geodesics
4C The Gauss equation and the Theorema Egregium
4D The fundamental theorem of the local theory of surfaces
4E The Gaussian curvature in special parameters
4F The Gauss-Bonnet Theorem
4G Selected topics in the global theory of surfaces
Exercises
Chapter 5. Riemannian Manifolds
5A The notion of a manifold
5B The tangent space
5C Riemannian metrics
5D The Riemannian connection
Chapter 6. The Curvature Tensor
6A Tensors
6B The sectional curvature
6C The Ricci tensor and the Einstein tensor
Chapter 7. Spaces of Constant Curvature
7A Hyperbolic space
7B Geodesics and Jacobi fields
7C The space form problem
7D Three-dimensional Euclidean and spherical space forms
Exercises
Chapter 8. Einstein Spaces
8A The variation of the Hilbert-Einstein functional
8B The Einstein field equations
8C Homogenous Einstein spaces
8D The decomposition of the curvature tensor
8E The Weyl tensor
8F Duality for four-manifolds and Petrov types
Exercises
Solutions to selected exercises
Bibliography
List of notation
Index