注册 登录 进入教材巡展
#
  • #

出版时间:2017-10

出版社:机械工业出版社

以下为《大数据导论(英文版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 机械工业出版社
  • 9787111580980
  • 1版
  • 283891
  • 47229817-3
  • 平装
  • 16开
  • 2017-10
  • 314
  • 224
  • 理学
  • 数学
  • TP274
  • 计算机通信类
  • 本科
作者简介
Thomas Erl畅销IT书作者,Arcitura教育机构的创始人,《服务技术杂志》编辑。作为Arcitura教育公司的CEO,Thomas领导研发了国际公认的大数据科学职业认证(Big Data Science Certified Professional,BDSCP)和SOA职业认证(SOA Certificated Professional,SOACP)的课程大纲。
Wajid Khattak Arcitura教育机构的大数据研究人员和培训师。
Dr. Paul Buhler是一位活跃于商业、政府机构和学术领域的经验丰富的专业人士。
查看全部
内容简介
本书是面向商业和技术专业人员的大数据指南,清楚地介绍了大数据相关的概念、理论、术语与基础技术,并使用真实连贯的商业案例以及简单的图表,帮助读者更清晰地理解大数据技术。本书可作为高等院校相关专业“大数据基础”“大数据导论”等课程的教材,也可供有一定实践经验的软件开发人员、管理人员和所有对大数据感兴趣的人士阅读。
目录
ContentsPART I: THE FUNDAMENTALS OF BIG DATACHAPTER 1: Understanding Big Data 3Concepts and Terminology 5Datasets 5Data Analysis 6Data Analytics 6Descriptive Analytics 8Diagnostic Analytics 9Predictive Analytics 10Prescriptive Analytics 11Business Intelligence (BI) 12Key Performance Indicators (KPI) 12Big Data Characteristics 13Volume 14Velocity 14Variety 15Veracity 16Value 16Different Types of Data 17Structured Data 18Unstructured Data 19Semi-structured Data 19Metadata 20Case Study Background 20History 20Technical Infrastructure and Automation Environment 21Business Goals and Obstacles 22Case Study Example 24Identifying Data Characteristics 26Volume 26Velocity 26Variety 26Veracity 26Value 27Identifying Types of Data 27CHAPTER 2: Business Motivations and Drivers for Big Data Adoption 29Marketplace Dynamics 30Business Architecture 33Business Process Management 36Information and Communications Technology 37Data Analytics and Data Science 37Digitization 38Affordable Technology and Commodity Hardware 38Social Media 39Hyper-Connected Communities and Devices 40Cloud Computing 40Internet of Everything (IoE) 42Case Study Example 43CHAPTER 3: Big Data Adoption and Planning Considerations 47Organization Prerequisites 49Data Procurement 49Privacy 49Security 50Provenance 51Limited Realtime Support 52Distinct Performance Challenges 53Distinct Governance Requirements 53Distinct Methodology 53Clouds 54Big Data Analytics Lifecycle 55Business Case Evaluation 56Data Identification 57Data Acquisition and Filtering 58Data Extraction 60Data Validation and Cleansing 62Data Aggregation and Representation 64Data Analysis 66Data Visualization 68Utilization of Analysis Results 69Cas