大数据基础编程、实验和案例教程
¥59.00定价
作者: 林子雨
出版时间:2017-08
出版社:清华大学出版社
- 清华大学出版社
- 9787302472094
- 231241
- 2017-08
作者简介
内容简介
本书以大数据分析全流程为主线,介绍了数据采集、数据存储与管理、数据处理与分析、数据可视化等环节典型软件的安装、使用和基础编程方法。本书内容涵盖操作系统(Linux和Windows)、开发工具(Eclipse)以及大数据相关技术、软件(Sqoop、Kafka、Flume、Hadoop、HDFS、MapReduce、HBase、Hive、Spark、MySQL、MongoDB、Redis、R、、D3、魔镜、ECharts、Tableau)等。同时,本书还提供了丰富的课程实验和综合案例,以及大量免费的在线教学资源,可以较好地满足高等院校大数据教学实际需求。 本书是《大数据技术原理与应用——概念、存储、处理、分析与应用》的“姊妹篇”,可以作为高等院校计算机、信息管理等相关专业的大数据课程辅助教材,用于指导大数据编程实践;也可供相关技术人员参考。
目录
目录
第1章大数据技术概述/1
1.1大数据时代/1
1.2大数据关键技术/2
1.3大数据软件/3
1.3.1Hadoop/4
1.3.2Spark/5
1.3.3NoSQL数据库/5
1.3.4数据可视化/6
1.4内容安排/7
1.5在线资源/8
1.5.1在线资源一览表/9
1.5.2下载专区/9
1.5.3在线视频/10
1.5.4拓展阅读/11
1.5.5大数据课程公共服务平台/11
1.6本章小结/12第2章Linux系统的安装和使用/13
2.1Linux系统简介/13
2.2Linux系统安装/13
2.2.1下载安装文件/14
2.2.2Linux系统的安装方式/14
2.2.3安装Linux虚拟机/15
2.2.4生成Linux虚拟机镜像文件/36
2.3Linux系统及相关软件的基本使用方法/38
2.3.1Shell/38
2.3.2root用户/38
2.3.3创建普通用户/38〖2〗〖4〗大数据基础编程、实验和案例教程目录〖3〗2.3.4sudo命令/39
2.3.5常用的Linux系统命令/40
2.3.6文件解压缩/40
2.3.7常用的目录/41
2.3.8目录的权限/41
2.3.9更新APT/41
2.3.10切换中英文输入法/43
2.3.11vim编辑器的使用方法/43
2.3.12在Windows系统中使用SSH方式登录Linux系统/44
2.3.13在Linux中安装Eclipse/48
2.3.14其他使用技巧/49
2.4关于本书内容的一些约定/49
2.5本章小结/50第3章Hadoop的安装和使用/51
3.1Hadoop简介/51
3.2安装Hadoop前的准备工作/52
3.2.1创建hadoop用户/52
3.2.2更新APT/52
3.2.3安装SSH/52
3.2.4安装Java环境/53
3.3安装Hadoop/55
3.3.1下载安装文件/55
3.3.2单机模式配置/56
3.3.3伪分布式模式配置/57
3.3.4分布式模式配置/66
3.3.5使用Docker搭建Hadoop分布式集群/75
3.4本章小结/87第4章HDFS操作方法和基础编程/88
4.1HDFS操作常用Shell命令/88
4.1.1查看命令使用方法/88
4.1.2HDFS目录操作/90
4.2利用HDFS的Web管理界面/92
4.3HDFS编程实践/92
4.3.1在Eclipse中创建项目/93
4.3.2为项目添加需要用到的JAR包/94
4.3.3编写Java应用程序/96
4.3.4编译运行程序/98
4.3.5应用程序的部署/100
4.4本章小结/102第5章HBase的安装和基础编程/103
5.1安装HBase/103
5.1.1下载安装文件/103
5.1.2配置环境变量/104
5.1.3添加用户权限/104
5.1.4查看HBase版本信息/104
5.2HBase的配置/105
5.2.1单机模式配置/105
5.2.2伪分布式配置/107
5.3HBase常用Shell命令/109
5.3.1在HBase中创建表/109
5.3.2添加数据/110
5.3.3查看数据/110
5.3.4删除数据/111
5.3.5删除表/112
5.3.6查询历史数据/112
5.3.7退出HBase数据库/112
5.4HBase编程实践/113
5.4.1在Eclipse中创建项目/113
5.4.2为项目添加需要用到的JAR包/116
5.4.3编写Java应用程序/117
5.4.4编译运行程序/123
5.4.5应用程序的部署/124
5.5本章小结/124第6章典型NoSQL数据库的安装和使用/125
6.1Redis安装和使用/125
6.1.1Redis简介/125
6.1.2安装Redis/125
6.1.3Redis实例演示/127
6.2MongoDB的安装和使用/128
6.2.1MongDB简介/129
6.2.2安装MongoDB/129
6.2.3使用Shell命令操作MongoDB/130
6.2.4Java API编程实例/136
6.3本章小结/139第7章MapReduce基础编程/140
7.1词频统计任务要求/140
7.2MapReduce程序编写方法/141
7.2.1编写Map处理逻辑/141
7.2.2编写Reduce处理逻辑/141
7.2.3编写main方法/142
7.2.4完整的词频统计程序/143
7.3编译打包程序/144
7.3.1使用命令行编译打包词频统计程序/145
7.3.2使用Eclipse编译运行词频统计程序/145
7.4运行程序/154
7.5本章小结/156第8章数据仓库Hive的安装和使用/157
8.1Hive的安装/157
8.1.1下载安装文件/157
8.1.2配置环境变量/158
8.1.3修改配置文件/158
8.1.4安装并配置MySQL/159
8.2Hive的数据类型/161
8.3Hive基本操作/162
8.3.1创建数据库、表、视图/162
8.3.2删除数据库、表、视图/163
8.3.3修改数据库、表、视图/164
8.3.4查看数据库、表、视图/165
8.3.5描述数据库、表、视图/165
8.3.6向表中装载数据/166
8.3.7查询表中数据/166
8.3.8向表中插入数据或从表中导出数据/166
8.4Hive应用实例: WordCount/167
8.5Hive编程的优势/167
8.6本章小结/168第9章Spark的安装和基础编程/169
9.1基础环境/169
9.2安装Spark/169
9.2.1下载安装文件/169
9.2.2配置相关文件/170
9.3使用 Spark Shell编写代码/171
9.3.1启动Spark Shell/171
9.3.2读取文件/172
9.3.3编写词频统计程序/174
9.4编写Spark独立应用程序/174
9.4.1用Scala语言编写Spark独立应用程序/175
9.4.2用Java语言编写Spark独立应用程序/178
9.5本章小结/182第10章典型的可视化工具的使用方法/183
信息图制作方法/183
10.1.1信息图/183
10.1.2信息图制作基本步骤/183
10.2D3可视化库的使用方法/186
10.2.1D3可视化库的安装/187
10.2.2基本操作/187
10.3可视化工具Tableau使用方法/194
10.3.1安装Tableau/195
10.3.2界面功能介绍/195
10.3.3Tableau简单操作/197
10.4使用“魔镜”制作图表/202
10.4.1“魔镜”简介/202
10.4.2简单制作实例/202
10.5使用ECharts图表制作/206
10.5.1ECharts简介/206
10.5.2ECharts图表制作方法/206
10.5.3两个实例/210
10.6本章小结/217第11章数据采集工具的安装和使用/218
11.1Flume/218
11.1.1安装Flume/218
11.1.2两个实例/220
11.2Kafka/225
11.2.1Kafka相关概念/225
11.2.2安装Kafka/225
11.2.3一个实例/225
11.3Sqoop/227
11.3.1下载安装文件/227
11.3.2修改配置文件/228
11.3.3配置环境变量/228
11.3.4添加MySQL驱动程序/228
11.3.5测试与MySQL的连接/229
11.4实例: 编写Spark程序使用Kafka数据源/230
11.4.1Kafka准备工作/230
11.4.2Spark准备工作/232
11.4.3编写Spark程序使用Kafka数据源/234
11.5本章小结/239第12章大数据课程综合实验案例/241
12.1案例简介/241
12.1.1案例目的/241
12.1.2适用对象/241
12.1.3时间安排/241
12.1.4预备知识/241
12.1.5硬件要求/242
12.1.6软件工具/242
12.1.7数据集/242
12.1.8案例任务/242
12.2实验环境搭建/243
12.3实验步骤概述/244
12.4本地数据集上传到数据仓库Hive/245
12.4.1实验数据集的下载/245
12.4.2数据集的预处理/246
12.4.3导入数据库/249
12.5Hive数据分析/253
12.5.1简单查询分析/253
12.5.2查询条数统计分析/255
12.5.3关键字条件查询分析/256
12.5.4根据用户行为分析/258
12.5.5用户实时查询分析/259
12.6Hive、MySQL、HBase数据互导/260
12.6.1Hive预操作/260
12.6.2使用Sqoop将数据从Hive导入MySQL/261
12.6.3使用Sqoop将数据从MySQL导入HBase/265
12.6.4使用HBase Java API把数据从本地导入到HBase中/269
12.7利用R进行数据可视化分析/275
12.7.1安装R/275
12.7.2安装依赖库/277
12.7.3可视化分析/278
12.8本章小结/283第13章实验/284
13.1实验一: 熟悉常用的Linux操作和Hadoop操作/284
13.1.1实验目的/284
13.1.2实验平台/284
13.1.3实验步骤/284
13.1.4实验报告/286
13.2实验二: 熟悉常用的HDFS操作/286
13.2.1实验目的/286
13.2.2实验平台/286
13.2.3实验步骤/287
13.2.4实验报告/287
13.3实验三: 熟悉常用的HBase操作/288
13.3.1实验目的/288
13.3.2实验平台/288
13.3.3实验步骤/288
13.3.4实验报告/290
13.4实验四: NoSQL和关系数据库的操作比较/290
13.4.1实验目的/290
13.4.2实验平台/290
13.4.3实验步骤/290
13.4.4实验报告/293
13.5实验五: MapReduce初级编程实践/294
13.5.1实验目的/294
13.5.2实验平台/294
13.5.3实验步骤/294
13.5.4实验报告/297附录A大数据课程实验答案/298
A.1实验一: 熟悉常用的Linux操作和Hadoop操作/298
A.1.1实验目的/298
A.1.2实验平台/298
A.1.3实验步骤/298
A.2实验二: 熟悉常用的HDFS操作/303
A.2.1实验目的/303
A.2.2实验平台/303
A.2.3实验步骤/303
A.3实验三: 熟悉常用的HBase操作/323
A.3.1实验目的/323
A.3.2实验平台/323
A.3.3实验步骤/323
A.4实验四: NoSQL和关系数据库的操作比较/331
A.4.1实验目的/331
A.4.2实验平台/331
A.4.3实验步骤/332
A.5实验五: MapReduce初级编程实践/349
A.5.1实验目的/349
A.5.2实验平台/349
A.5.3实验步骤/350附录BLinux系统中的MySQL安装及常用操作/360
B.1安装MySQL/360
B.2MySQL常用操作/363参考文献/367
第1章大数据技术概述/1
1.1大数据时代/1
1.2大数据关键技术/2
1.3大数据软件/3
1.3.1Hadoop/4
1.3.2Spark/5
1.3.3NoSQL数据库/5
1.3.4数据可视化/6
1.4内容安排/7
1.5在线资源/8
1.5.1在线资源一览表/9
1.5.2下载专区/9
1.5.3在线视频/10
1.5.4拓展阅读/11
1.5.5大数据课程公共服务平台/11
1.6本章小结/12第2章Linux系统的安装和使用/13
2.1Linux系统简介/13
2.2Linux系统安装/13
2.2.1下载安装文件/14
2.2.2Linux系统的安装方式/14
2.2.3安装Linux虚拟机/15
2.2.4生成Linux虚拟机镜像文件/36
2.3Linux系统及相关软件的基本使用方法/38
2.3.1Shell/38
2.3.2root用户/38
2.3.3创建普通用户/38〖2〗〖4〗大数据基础编程、实验和案例教程目录〖3〗2.3.4sudo命令/39
2.3.5常用的Linux系统命令/40
2.3.6文件解压缩/40
2.3.7常用的目录/41
2.3.8目录的权限/41
2.3.9更新APT/41
2.3.10切换中英文输入法/43
2.3.11vim编辑器的使用方法/43
2.3.12在Windows系统中使用SSH方式登录Linux系统/44
2.3.13在Linux中安装Eclipse/48
2.3.14其他使用技巧/49
2.4关于本书内容的一些约定/49
2.5本章小结/50第3章Hadoop的安装和使用/51
3.1Hadoop简介/51
3.2安装Hadoop前的准备工作/52
3.2.1创建hadoop用户/52
3.2.2更新APT/52
3.2.3安装SSH/52
3.2.4安装Java环境/53
3.3安装Hadoop/55
3.3.1下载安装文件/55
3.3.2单机模式配置/56
3.3.3伪分布式模式配置/57
3.3.4分布式模式配置/66
3.3.5使用Docker搭建Hadoop分布式集群/75
3.4本章小结/87第4章HDFS操作方法和基础编程/88
4.1HDFS操作常用Shell命令/88
4.1.1查看命令使用方法/88
4.1.2HDFS目录操作/90
4.2利用HDFS的Web管理界面/92
4.3HDFS编程实践/92
4.3.1在Eclipse中创建项目/93
4.3.2为项目添加需要用到的JAR包/94
4.3.3编写Java应用程序/96
4.3.4编译运行程序/98
4.3.5应用程序的部署/100
4.4本章小结/102第5章HBase的安装和基础编程/103
5.1安装HBase/103
5.1.1下载安装文件/103
5.1.2配置环境变量/104
5.1.3添加用户权限/104
5.1.4查看HBase版本信息/104
5.2HBase的配置/105
5.2.1单机模式配置/105
5.2.2伪分布式配置/107
5.3HBase常用Shell命令/109
5.3.1在HBase中创建表/109
5.3.2添加数据/110
5.3.3查看数据/110
5.3.4删除数据/111
5.3.5删除表/112
5.3.6查询历史数据/112
5.3.7退出HBase数据库/112
5.4HBase编程实践/113
5.4.1在Eclipse中创建项目/113
5.4.2为项目添加需要用到的JAR包/116
5.4.3编写Java应用程序/117
5.4.4编译运行程序/123
5.4.5应用程序的部署/124
5.5本章小结/124第6章典型NoSQL数据库的安装和使用/125
6.1Redis安装和使用/125
6.1.1Redis简介/125
6.1.2安装Redis/125
6.1.3Redis实例演示/127
6.2MongoDB的安装和使用/128
6.2.1MongDB简介/129
6.2.2安装MongoDB/129
6.2.3使用Shell命令操作MongoDB/130
6.2.4Java API编程实例/136
6.3本章小结/139第7章MapReduce基础编程/140
7.1词频统计任务要求/140
7.2MapReduce程序编写方法/141
7.2.1编写Map处理逻辑/141
7.2.2编写Reduce处理逻辑/141
7.2.3编写main方法/142
7.2.4完整的词频统计程序/143
7.3编译打包程序/144
7.3.1使用命令行编译打包词频统计程序/145
7.3.2使用Eclipse编译运行词频统计程序/145
7.4运行程序/154
7.5本章小结/156第8章数据仓库Hive的安装和使用/157
8.1Hive的安装/157
8.1.1下载安装文件/157
8.1.2配置环境变量/158
8.1.3修改配置文件/158
8.1.4安装并配置MySQL/159
8.2Hive的数据类型/161
8.3Hive基本操作/162
8.3.1创建数据库、表、视图/162
8.3.2删除数据库、表、视图/163
8.3.3修改数据库、表、视图/164
8.3.4查看数据库、表、视图/165
8.3.5描述数据库、表、视图/165
8.3.6向表中装载数据/166
8.3.7查询表中数据/166
8.3.8向表中插入数据或从表中导出数据/166
8.4Hive应用实例: WordCount/167
8.5Hive编程的优势/167
8.6本章小结/168第9章Spark的安装和基础编程/169
9.1基础环境/169
9.2安装Spark/169
9.2.1下载安装文件/169
9.2.2配置相关文件/170
9.3使用 Spark Shell编写代码/171
9.3.1启动Spark Shell/171
9.3.2读取文件/172
9.3.3编写词频统计程序/174
9.4编写Spark独立应用程序/174
9.4.1用Scala语言编写Spark独立应用程序/175
9.4.2用Java语言编写Spark独立应用程序/178
9.5本章小结/182第10章典型的可视化工具的使用方法/183
信息图制作方法/183
10.1.1信息图/183
10.1.2信息图制作基本步骤/183
10.2D3可视化库的使用方法/186
10.2.1D3可视化库的安装/187
10.2.2基本操作/187
10.3可视化工具Tableau使用方法/194
10.3.1安装Tableau/195
10.3.2界面功能介绍/195
10.3.3Tableau简单操作/197
10.4使用“魔镜”制作图表/202
10.4.1“魔镜”简介/202
10.4.2简单制作实例/202
10.5使用ECharts图表制作/206
10.5.1ECharts简介/206
10.5.2ECharts图表制作方法/206
10.5.3两个实例/210
10.6本章小结/217第11章数据采集工具的安装和使用/218
11.1Flume/218
11.1.1安装Flume/218
11.1.2两个实例/220
11.2Kafka/225
11.2.1Kafka相关概念/225
11.2.2安装Kafka/225
11.2.3一个实例/225
11.3Sqoop/227
11.3.1下载安装文件/227
11.3.2修改配置文件/228
11.3.3配置环境变量/228
11.3.4添加MySQL驱动程序/228
11.3.5测试与MySQL的连接/229
11.4实例: 编写Spark程序使用Kafka数据源/230
11.4.1Kafka准备工作/230
11.4.2Spark准备工作/232
11.4.3编写Spark程序使用Kafka数据源/234
11.5本章小结/239第12章大数据课程综合实验案例/241
12.1案例简介/241
12.1.1案例目的/241
12.1.2适用对象/241
12.1.3时间安排/241
12.1.4预备知识/241
12.1.5硬件要求/242
12.1.6软件工具/242
12.1.7数据集/242
12.1.8案例任务/242
12.2实验环境搭建/243
12.3实验步骤概述/244
12.4本地数据集上传到数据仓库Hive/245
12.4.1实验数据集的下载/245
12.4.2数据集的预处理/246
12.4.3导入数据库/249
12.5Hive数据分析/253
12.5.1简单查询分析/253
12.5.2查询条数统计分析/255
12.5.3关键字条件查询分析/256
12.5.4根据用户行为分析/258
12.5.5用户实时查询分析/259
12.6Hive、MySQL、HBase数据互导/260
12.6.1Hive预操作/260
12.6.2使用Sqoop将数据从Hive导入MySQL/261
12.6.3使用Sqoop将数据从MySQL导入HBase/265
12.6.4使用HBase Java API把数据从本地导入到HBase中/269
12.7利用R进行数据可视化分析/275
12.7.1安装R/275
12.7.2安装依赖库/277
12.7.3可视化分析/278
12.8本章小结/283第13章实验/284
13.1实验一: 熟悉常用的Linux操作和Hadoop操作/284
13.1.1实验目的/284
13.1.2实验平台/284
13.1.3实验步骤/284
13.1.4实验报告/286
13.2实验二: 熟悉常用的HDFS操作/286
13.2.1实验目的/286
13.2.2实验平台/286
13.2.3实验步骤/287
13.2.4实验报告/287
13.3实验三: 熟悉常用的HBase操作/288
13.3.1实验目的/288
13.3.2实验平台/288
13.3.3实验步骤/288
13.3.4实验报告/290
13.4实验四: NoSQL和关系数据库的操作比较/290
13.4.1实验目的/290
13.4.2实验平台/290
13.4.3实验步骤/290
13.4.4实验报告/293
13.5实验五: MapReduce初级编程实践/294
13.5.1实验目的/294
13.5.2实验平台/294
13.5.3实验步骤/294
13.5.4实验报告/297附录A大数据课程实验答案/298
A.1实验一: 熟悉常用的Linux操作和Hadoop操作/298
A.1.1实验目的/298
A.1.2实验平台/298
A.1.3实验步骤/298
A.2实验二: 熟悉常用的HDFS操作/303
A.2.1实验目的/303
A.2.2实验平台/303
A.2.3实验步骤/303
A.3实验三: 熟悉常用的HBase操作/323
A.3.1实验目的/323
A.3.2实验平台/323
A.3.3实验步骤/323
A.4实验四: NoSQL和关系数据库的操作比较/331
A.4.1实验目的/331
A.4.2实验平台/331
A.4.3实验步骤/332
A.5实验五: MapReduce初级编程实践/349
A.5.1实验目的/349
A.5.2实验平台/349
A.5.3实验步骤/350附录BLinux系统中的MySQL安装及常用操作/360
B.1安装MySQL/360
B.2MySQL常用操作/363参考文献/367