软物质力学进展(英文版)
作者: Shaofan Li,Bohua Sun
出版时间:2011-10-17
出版社:高等教育出版社
- 高等教育出版社
- 9787040317299
- 1版
- 227346
- 46255120-1
- 精装
- 16开
- 2011-10-17
- 410
- 298
- 工学
- 力学
- O3
- 材料、力学类
- 研究生及以上
《软物质力学进展(英文版)》作为软物质物理学的一个重要分支,近年来软物质力学的研究取得了重大的发展。《软物质力学进展(英文版)》即是从力学的角度 系统总结了软物质物理学的最新进展,深入介绍了软物质力学研究的新方法,包括多尺度胶体计算力学、熵弹性理论、无网格模拟液晶聚合物、DNA模拟计算等, 并从跨学科的角度出发,介绍了当前软物质力学研究领域的一些前沿课题。
《软物质力学进展(英文版)》的主编是美国加州大学伯克利分校的李少凡教授和南非科学院院士、开普半岛科技大学的孙博华教授。
前辅文
Chapter 1 Atomistic to Continuum Modeling of DNA Molecules
1.1 Introduction
1.2 Statistical models for DNAs|polymer elasticity
1.2.1 The freely jointed chain (FJC) model
1.2.2 The worm-like chain (WLC) model
1.2.3 Beyond the entropic regime
1.2.4 Long-range electrostatic e®ects
1.3 Atomistic modeling of DNA molecules
1.3.1 MD basic theory
1.3.2 Force ¯elds for nucleic acids
1.3.3 Limitations and challenges
1.3.4 MD simulation of DNA stretching
1.4 Continuum DNA models
1.4.1 Kirchho®'s elastic Rod model for DNAs
1.4.2 Finite element (FE) analysis of DNAs
1.4.3 Director ¯eld method for modeling of DNA viral packaging
1.5 Multiscale homogenization for simulation of DNA molecules
1.5.1 Basics of multiscale wavelet projection method
1.5.2 First-level homogenization|wavelet-based coarse-grained DNA model
1.5.3 Second-level homogenization|hyperelastic beam formulation for DNA
1.5.4 Applications
1.6 Conclusion
Appendix: Wavelet and decomposition coe±cients for linear spline function
References
Chapter 2 Computational Contact Formulations for Soft Body Adhesion
2.1 Introduction
2.2 Continuum contact formulation
2.3 Finite element formulations
2.4 Adhesion examples
2.5 Peeling contact
2.6 Rough surface contact
2.7 Conclusion
References
Chapter 3 Soft Matter Modeling of Biological Cells
3.1 Introduction
3.2 Soft matter modeling of cells
3.2.1 The future is soft
3.2.2 The reasons to use liquid crystal elastomers to model cell and focal adhesion
3.2.3 Elasticity of soft contact/cell adhesion and surface material property sensing
3.2.4 Cell and ECM modeling
3.3 A nanoscale adhesive contact model
3.4 Meshfree Galerkin formulation and the computational algorithm
3.5 Numerical simulations
3.5.1 Validation of the material models
3.5.2 Endothelial cell simulations
3.5.3 Stem cell simulations
3.6 Discussion and conclusions
References
Chapter 4 Modeling the Mechanics of Semi°exible Biopoly-mer Networks: Non-a±ne Deformation and Presence of Long-range Correlations
4.1 Introduction
4.2 Network representation and generation
4.3 A±ne vs. non-a±ne deformation
4.4 Network microstructure: scaling properties of the ¯berdensity function
4.5 Network elasticity: the equivalent continuum and its elastic moduli
4.6 Boundary value problems on dense ¯ber network domains
4.6.1 Background: a±ne and non-a±ne theories
4.6.2 Karhunen { Loeve decomposition
4.6.3 Stochastic ¯nite element formulation of 2D problems
4.7 Solution of boundary value problems on dense ¯bernetwork domains
References
Chapter 5 Atomic Scale Monte-Carlo Studies of Entropic Elasticity Properties of Polymer Chain Molecules
5.1 Introduction
5.2 Entropic elasticity of linear polymer molecules
5.2.1 Continuum limit
5.2.2 Monte { Carlo sampling
5.3 Summary
References
Chapter 6 Continuum Models of Stimuli-responsive Gels
6.1 Introduction
6.2 Nonequilibrium thermodynamics of neutral gels
6.3 A simple material model for neutral gels
6.4 Swelling of a spherical gel
6.5 Thermodynamics of polyelectrolyte gels
6.6 A material model for polyelectrolyte gels
6.7 Chemical reactions and pH-sensitive gels
6.8 Equilibrium models of polymeric gels
6.9 Summary
References
Chapter 7 Micromechanics of 3D Crystallized Protein Structures
7.1 Introduction
7.2 3D crystallized protein structures
7.3 Thermomechanical properties of protein crystals
7.4 A micromechanical model for protein crystals
7.5 Application to tetragonal lysozyme as a protein crystal model
7.5.1 Elastic deformation in lysozyme crystals
7.5.2 Plastic deformation in lysozyme crystals
7.5.3 Anisotropic plastic yielding of lysozyme crystals
7.5.4 Orientation e®ect on mechanical behavior of lysozyme crystals
References
Chapter 8 Micromechanical Modeling of Three-dimensional Open-cell Foams
8.1 Introduction
8.1.1 Unit cell models
8.1.2 Random cell models
8.2 Micromechanics model using a tetrakaidecahedral unit cell
8.2.1 Formulation
8.2.2 Numerical results
8.2.3 Summary
8.3 Random cell model incorporating cell shape and strut cross-sectional area irregularities
8.3.1 Analysis
8.3.2 Results and discussion
8.3.3 Summary
References
Chapter 9 Capillary Adhesion of Micro-beams and Plates:A Review
9.1 Introduction
9.2 Capillary adhesion of micro-beams of in¯nitesimal deformation
9.3 Capillary adhesion of micro-beams of ¯nite deformation
9.4 Hierarchical structure of micro-beams induced by capillary force
9.5 Capillary adhesion of a plate
9.6 Conclusions
References
Color Plots