注册 登录 进入教材巡展
#
  • #

出版时间:2011-01-14

出版社:高等教育出版社

以下为《光电集成电路设计与器件建模(英文版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040313260
  • 1版
  • 187990
  • 46254631-8
  • 平装
  • 16开
  • 2011-01-14
  • 350
  • 200
  • 工学
  • 电子科学与技术
  • TN25
  • 电子信息科学类
  • 研究生及以上
内容简介

《光电集成电路设计与器件建模(英文版)》主要介绍微波技术在光电子集成电路设计领域的应用,内容涵盖先进的半导体光电子器件建模技术、高速光发射和接收电路设计技术,器件涉及半导体激光器、半导体探测器以及多种高速半导体器件,特别是对于双极晶体管和场效应晶体管在超高速光电子集成电路中的应用进行了详细的讨论。

本书在微波器件建模技术和光电子集成电路设计之间架起了一座学科贯通的桥梁,非常适合微波射频领域和光电子领域的高年级本科生、研究生和科研工作人员入门学习。

目录

 Front Matter
  Preface
  About the Author
  Nomenclature
 1 Introduction
  1.1 Optical Communication System
  1.2 Optoelectronic Integrated Circuit Computer-Aided Design
  1.3 Organization of This Book
  References
 2 Basic Concept of Semiconductor Laser Diodes
  2.1 Introduction
  2.2 Basic Concept
   2.2.1 Atom Energy
   2.2.2 Emission and Absorption
   2.2.3 Population Inversion
  2.3 Structures and Types
   2.3.1 Homojunction and Heterojunction
   2.3.2 Index Guiding and Gain Guiding
   2.3.3 Fabry—Perot Cavity Lasers
   2.3.4 Quantum-Well Lasers
   2.3.5 Distributed Feedback Lasers
   2.3.6 Vertical-Cavity Surface-Emitting Lasers
  2.4 Laser Characteristics
   2.4.1 Single-Mode Rate Equations
   2.4.2 Multimode Rate Equations
   2.4.3 Small-Signal Intensity Modulation
   2.4.4 Small-Signal Frequency Modulation
   2.4.5 Large-Signal Transit Response
   2.4.6 Second Harmonic Distortion
   2.4.7 Relative Intensity Noise
   2.4.8 Measurement Technique
  2.5 Summary
  References
 3 Modeling and Parameter Extraction Techniques of Lasers
  3.1 Introduction
  3.2 Standard Double Heterojunction Semiconductor Lasers
   3.2.1 Large-Signal Model
   3.2.2 Small-Signal Model
   3.2.3 Noise Model
  3.3 Quantum-Well Lasers
   3.3.1 One-Level Equivalent Circuit Model
   3.3.2 Two-Level Equivalent Circuit Model
   3.3.3 Three-Level Equivalent Circuit Model
  3.4 Parameter Extraction Methods
   3.4.1 Direct-Extraction Method
   3.4.2 Semi-Analytical Method
  3.5 Summary
  References
 4 Microwave Modeling Techniques of Photodiodes
  4.1 Introduction
  4.2 Physical Principles
  4.3 Figures of Merit
   4.3.1 Responsivity
   4.3.2 Quantum Efficiency
   4.3.3 Absorption Coefficient
   4.3.4 Dark Current
   4.3.5 Rise Time and Bandwidth
   4.3.6 Noise Currents
  4.4 Microwave Modeling Techniques
   4.4.1 PIN PD
   4.4.2 APD
  4.5 Summary
  References
 5 High-Speed Electronic Semiconductor Devices
  5.1 Overview of Microwave Transistors
  5.2 FET Modeling Technique
   5.2.1 FET Small-Signal Modeling
   5.2.2 FET Large-Signal Modeling
   5.2.3 FET Noise Modeling
  5.3 GaAs/InP HBT Modeling Technique
   5.3.1 GaAs/InP HBT Nonlinear Model
   5.3.2 GaAs/InP HBT Linear Model
   5.3.3 GaAs/InP HBT Noise Model
   5.3.4 Parameter Extraction Methods
  5.4 SiGe HBT Modeling Technique
  5.5 MOSFET Modeling Technique
   5.5.1 MOSFET Small-Signal Model
   5.5.2 MOSFET Noise Model
   5.5.3 Parameter Extraction Methods
  5.6 Summary
  References
 6 Semiconductor Laser and Modulator Driver Circuit Design
  6.1 Basic Concepts
   6.1.1 NRZ and RZ Data
   6.1.2 Optical Modulation
   6.1.3 Optical External Modulator
  6.2 Optoelectronic Integration Technology
   6.2.1 Monolithic Optoelectronic Integrated Circuits
   6.2.2 Hybrid Optoelectronic Integrated Circuits
  6.3 Laser Driver Circuit Design
   6.4 Modulator Driver Circuit Design
   6.4.1 FET-Based Driver Circuit
   6.4.2 Bipolar Transistor-Based Driver Integrated Circuit
   6.4.3 MOSFET-Based Driver Integrated Circuit
  6.5 Distributed Driver Circuit Design
  6.6 Passive Peaking Techniques
   6.6.1 Capacitive Peaking Techniques
   6.6.2 Inductive Peaking Techniques
  6.7 Summary
  References
 7 Optical Receiver Front-End Integrated Circuit Design
  7.1 Basic Concepts of the Optical Receiver
   7.1.1 Signal-to-Noise Ratio
   7.1.2 Bit Error Ratio
   7.1.3 Sensitivity
   7.1.4 Eye Diagram
   7.1.5 Signal Bandwidth
   7.1.6 Dynamic Range
  7.2 Front-End Circuit Design
   7.2.1 Hybrid and Monolithic OEIC
   7.2.2 High-Impedance Front-End
   7.2.3 Transimpedance Front-End
  7.3 Transimpedance Gain and Equivalent Input Noise Current
   7.3.1 S Parameters of a Two-Port Network
   7.3.2 Noise Figure of a Two-Port Network
   7.3.3 Transimpedance Gain
   7.3.4 Equivalent Input Noise Current
   7.3.5 Simulation and Measurement of Transimpedance Gain and Equivalent Input Noise Current
  7.4 Transimpedance Amplifier Circuit Design
   7.4.1 BJT-Based Circuit Design
   7.4.2 HBT-Based Circuit Design
   7.4.3 FET-Based Circuit Design
   7.4.4 MOSFET-Based Circuit Design
   7.4.5 Distributed Circuit Design
  7.5 Passive Peaking Techniques
   7.5.1 Inductive Peaking Techniques
   7.5.2 Capacitive Peaking Techniques
  7.6 Matching Techniques
  7.7 Summary
   References
 Index