数理统计学导论(第5版)(影印版) / 海外优秀数学教材
作者: Robert V.Hogg
出版时间:2004-10-26
出版社:高等教育出版社
- 高等教育出版社
- 9787040155570
- 5版
- 170362
- 44258471-0
- 平装
- 异16开
- 2004-10-26
- 460
- 564
- 理学
- 数学
- O212.1
- 数学类、统计学类
- 本科
本系列丛书中,有Finney、Weir等编和《托马斯微积分》(第10版,Pearson),其特色可用“呈传统特色、富革新精神”概括,本书自20世纪50年代第1版以来,平均每四五年就有一个新版面世,长达50余年始终盛行于西方教坛,作者既有相当高的学术水平,又热爱教学,长期工作在教学第一线,其中,年近90的G.B.Thomas教授长年在MIT工作,具有丰富的教学经验;Finney教授也在MIT工作达10年;Weir是美国数学建模竞赛委员会主任。Stewart编的立体化教材《微积分》(第5版,Thomson Learning)配备了丰富的教学资源,是国际是最畅销的微积分原版教材,2003年全球销量约40余万册,在美国,占据了约50%~60%的微积分教材市场,其用户包括耶鲁等名牌院校及众多一般院校600余所。本系列丛书还包括Anton编的经典教材《线性代数及其应用》(第8版,Wiely);Jay L.Devore编的优秀教材《概率论与数理统计》(第5版,Thomson Learning)等。在努力降低引进教材售价方面,高等教育出版社做了大量和细致的工作,这套引进的教材体现了一定的权威性、系统性、先进性和经济性等特点。
PREFACE
CHAPTER 1 Probability and Distributions
1.1 Introduction
1.2 Set Theory
1.3 The Probability Set Function
1.4 Conditional Probability and Independence
1.5 Random Variables of the Discrete Type
1.6 Random Variables of the Continuous Type
1.7 Properties of the Distribution Function
1.8 Expectation of a Random Variable
1.9 Some Special Expectations
l.10 Chebyshev's Inequality
CHAPTER 2 Multivariate Distributions
2.1 Distributions of Two Random Variables
2.2 Conditional Distributions and Expectations
2.3 The Correlation Coefficient
2.4 Independent Random Variables
2.5 Extension to Several Random Variables
CHAPTER 3 Some Special Distributions
3.1 The Binomial and Related Distributions
3.2 The Poisson Distribution
3.3 The Gamma and Chi-Square Distributions
3.4 The Normal Distribution
3.5 The Bivariate Normal Distribution
CHAPTER 4 Distributions of Functions of Random Variables
4.1 Sampling Theory
4.2 Transformations of Variables of the Discrete Type
4.3 Transformations of Variables of the Continuous Type
4.4 The Beta,t,and F Distributions
4.5 Extensions of the Change-of-Variable Technique
4.6 Distributions of Order Statistics
4.7 The Moment-Generating-Function Technique
4.8 The Distributions of X and nS2/Q2
4.9 Expectations of Functions of Random Variables
*4.10 The Multivariate Normal Distribution
CHAPTER 5Limiting Distributions
5.1 Convergence in Distribution
5.2 Convergence in Probability
5.3 Limiting Moment-Generating Functions
5.4 The Central Limit Theorem
5.5 Some Theorems on Limiting Distributions
CHAPTER 6 Introduction to Statistical Inference
6.1 Point Estimation
6.2 Confidence Intervals for Means
6.3 Confidence Intervals for Differences of Means
6.4 Tests of Statistical Hypotheses
6.5 Additional Comments About Statistical Tests
6.6 Chi-Square Tests
CHAPTER 7Sufficient Statistics
7.1 Measures of Quality of Estimators
7.2 A Sufficient Statistic for a Parameter
7.3 Properties of a Sufficient Statistic
7.4 Completeness and Uniqueness
7.5 The Exponential Class of Probability Density Functions
7.6 Functions of a Parameter
7.7 The Case of Several Parameters
7.8 Minimal Sufficient and Ancillary Statistics
7.9 Sufficiency,Completeness,and Independence
CHAPTER 8 More About Estimation
8.1 Bayesian Estimation
8.2 Fisher Information and the Rao-Cramé Inequality
8.3 Limiting Distributions of Maximum Likelihood Estimators
8.4 Robust M-Estimation
CHAPTER 9 Theory of Statistical Tests
9.1 Certain Best Tests
9.2 Uniformly Most Powerful Tests
9.3 Likelihood Ratio Tests
9.4 The Sequential Probability Ratio Test
9.5 Minimax,Bayesian,and Classification Procedures
CHAPTER 10 Inferences About Normal Models
10.1 The Distributions of Certain Quadratic Forms
10.2 A Test of the Equality of Several Means
10.3 Noncentral X2 and Noncentral F
10.4 Multiple Comparisons
10.5 The Analysis of Variance
10.6 A Regression Problem
10.7 A Test of Independence
10.8 The Distributions of Certain Quadratic Forms
10.9 The Independence of Certain Quadratic Forms
CHAPTER 11 Nonparametric Methods
11.1 Confidence Intervals for Distribution Quantiles
11.2 Tolerance Limits for Distributions
11.3 The Sign Test
11.4 A Test of Wilcoxon
11.5 The Equality of Two Distributions
11.6 The Mann-Whitney-Wilcoxon Test
11.7 Distributions Under Alternative Hypotheses
11.8 Linear Rank Statistics
11.9 Adaptive Nonparametric Methods
APPENDIX A
References
APPENDIX B
Tables
APPENDIX C
Answers to Selected Exercises
INDEX