注册 登录 进入教材巡展
#

出版时间:2015-05

出版社:世界图书出版公司

以下为《工程与科学中的线性算子理论(英文版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 世界图书出版公司
  • 9787510095566
  • 167390
  • 2015-05
  • O177
内容简介
该书旨在为工程师、科研工作者和应用数学工作者提供适用于他们的泛函分析的基础知识。尽管书中采取的是定义-定理-证明的数学模式,但是该书在所涵盖知识点的选取和解释说明方面还是下了很大的功夫。该书也可以被用作高级教程,为了便于不同知识背景的学生学习,书中附录部分涵盖了许多有益的数学课题。

读者对象:工程学、形式科学和数学方面的学生以及工程师、科研工作者和应用数学工作者。
目录
Preface
 Chapter 1 Introduction
  1. Black Boxes
  2. Structure of the Plane
  3. Mathematical Modeling
  4. The Axiomatic Method. The
  Process of Abstraction
  5. Proofs of Theorems
 Chapter 2 Set-Theoretic Structure
  1. Introduction
  2. Basic Set Operations
  3. Cartesian Products
  4. Sets of Numbers
  5. Equivalence Relations and
  Partitions
  6. Functions
  7. Inverses
  8. Systems Types
 Chapter 3 Topological Structure
  1. Introduction
  Port A Introduction to Metric Spaces
  2. Metric Spaces: Definition
  3. Examples of Metric Spaces
  4. Subspaces and Product Spaces
  5. Continuous Functions
  6. Convergent Sequences
  7. A Connection Between
  Continuity and Convergence
  Part B Some Deeper Metric
  Space Concepts
  8. Local Neighborhoods
  9. Open Sets
  10. More on Open Sets
  11. Examples of Homeomorphic
  Metric Spaces
  12. Closed Sets and the Closure
  Operation
  13. Completeness
  14. Completion of Metric Spaces
  15. Contraction Mapping
  16. Total Boundexlness and
  Approximations
  17. Compactness
 Chapter 4 Algebraic Structure
  1. Introduction
  Part A Introduction to Linear Spaces
  2. Linear Spaces and Linear
  Subspaces
  3. Linear Transformations
  4. Inverse Transformations
  5. Isomorphisms
  6. Linear Independence and
  Dependence
  7. Hamel Bases and Dimension
  8. The Use of Matrices to Represent
  Linear Transformations
  9. Equivalent Linear
  Transformations
  Part B Further Topics
  10. Direct Sums and Sums
  11. Projections
  12. Linear Functionals and the Alge-
  braic Conjugate of a Linear Space
  13. Transpose of a Linear
  Transformation
 Chapter 5 Combined Topological
  and Algebraic Structure
  1. Introduction
  Part A Banach Spaces
  2. Definitions
  3. Examples of Normal Linear
  Spaces
  4. Sequences and Series
  5. Linear Subspaces
  6. Continuous Linear
  Transformations
  7. Inverses and Continuous Inverses
  8. Operator Topologies
  9. Equivalence of Normed Linear
  Spaces
  10. Finite-Dimensional Spaces
  11. Normed Conjugate Space and
  Conjugate Operator
  Part B Hilbert Spaces
  12. Inner Product and HUbert Spaces
  13. Examples
  14. Orthogonality
  15. Orthogonal Complements and the
  Projection Theorem
  16. Orthogonal Projections
  17. Orthogonal Sets and Bases:
  Generalized Fourier Series
  18. Examples of Orthonormal Bases
  19. Unitary Operators and Equiv-
  alent Inner Product Spaces
  20. Sums and Direct Sums of
  Hilbert Spaces
  21. Continuous Linear Functionals
  Part C Special Operators
  22. The Adjoint Operator
  23. Normal and Self-Adjoint
  Operators
  24. Compact Operators
  25. Foundations of Quantum
  Mechanics
 Chapter 6 Analysis of Linear Oper-
  ators (Compact Case)
  1. Introductioa
  Part A An Illustrative Example
  2. Geometric Analysis of Operators
  3. Geometric Analysis. The Eigen-
  value-Eigenvector Problem
  4. A Finite-Dimensional Problem
  Part B The Spectrum
  5. The Spectrum of Linear
  Transformations
  6. Examples of Spectra
  7. Properties of the Spectrum
  Part C Spectral Analysis
  8. Resolutions of the Identity
  9. Weighted Sums of Projections
  10. Spectral Properties of Compact,
  Normal, and Self-Adjoint
  Operators
  11. The Spectral Theorem
  12. Functions of Operators
  (Operational Calculus)
  13. Applications of the Spectral
  Theorem
  14. Nonnormal Operators
 Chapter 7 Analysis of Unbounded
  Operators
  1. Introduction
  2. Green's Functions
  3. Symmetric Operators
  4. Examples of Symmetric
  Operators
  5. Sturmiouville Operators
  6. Ghrding's Inequality
  7. EUiptie Partial Differential
  Operators
  8. The Dirichlet Problem
  9. The Heat Equation and Wave
  Equation
  10. Self-Adjoint Operators
  11. The Cayley Transform
  12. Quantum Mechanics, Revisited
  13. Heisenberg Uncertainty Principle
  14. The Harmonic Oscillator
  Appendix ,4 The H61der, Schwartz,
  and Minkowski
  Inequalities
  Appendix B Cardinality
  Appendix C Zom's temnm
  Appendix D Integration and
  Measure Theory
  1. Introduction
  2. The Riemann Integral
  3. A Problem with the Riemann
  Integral
  4. The Space Co
  5. Null Sets
  6. Convergence Almost Everywhere
  7. The Lebesgue Integral
  8. Limit Theorems
  9. Miscellany
  10. Other Definitions of the Integral
  11. The Lebesgue Spaces,
  12. Dense Subspaees of
  13. Differentiation
  14. The Radon-Nikodym Theorem
  15. Fubini Theorem
  Appendix E Probability Spaces and
  Stochastic Processes
  1. Probability Spaces
  2. Random Variables and
  Probability Distributions
  3. Expectation
  4. Stochastic Independence
  5. Conditional Expectation Operator
  6. Stochastic Processes
  Index of Symbols
  Index