- 高等教育出版社
- 9787040340181
- 1
- 132520
- 44213869-9
- 平装
- 异16开
- 2012-01-12
- 220
- 208
- 理学
- 数学
- O151.2
- 经济学、管理学
- 本科
本书介绍了线性代数的基本概念、理论和方法,主要内容包括:行列式、矩阵、线性方程组、矩阵的对角化、二次型及线性空间与线性变换。内容安排上由浅入深,概念表述清晰,语言通俗易懂,节后配有习题,章后配有综合习题,书后附有习题参考答案。
本书可作为高等学校理工类、经济管理类等专业线性代数课程的教材或参考书,也可供自学考试和相关科技工作者参考使用。
前辅文
第一章 行列式
§1.1 二阶与三阶行列式
§1.2 全排列及其逆序数
§1.3 n阶行列式
§1.4 行列式的性质
§1.5 行列式按行(列)展开
§1.6 几类常用的行列式计算方法
§1.7 克拉默(Cramer)法则
习题一
第二章 矩阵
§2.1 矩阵的概念
§2.2 矩阵的基本运算
§2.3 逆矩阵
§2.4 矩阵的分块
§2.5 矩阵的初等变换
§2.6 矩阵的秩
§2.7 矩阵的应用
习题二
第三章 线性方程组
§3.1 消元法解线性方程组
§3.2 n维向量空间
§3.3 向量间的线性关系
§3.4 向量组的线性相关性
§3.5 向量组的秩
§3.6 线性方程组解的结构定理
§3.7 线性方程组的应用
习题三
第四章 矩阵的对角化
§4.1 矩阵的特征值与特征向量
§4.2 相似矩阵
§4.3 向量的内积与正交矩阵
§4.4 实对称矩阵的对角化
§4.5 应用举例
习题四
第五章 二次型
§5.1 二次型及其矩阵
§5.2 化二次型为标准形
§5.3 正定二次型
§5.4 应用举例
习题五
第六章 线性空间与线性变换
§6.1 线性空间的定义与性质
§6.2 基、维数与坐标
§6.3 基变换与坐标变换
§6.4 线性变换
§6.5 线性变换的矩阵表示
习题六
习题参考答案
参考文献