注册 登录 进入教材巡展
#

出版时间:2015-01

出版社:世界图书出版公司

以下为《量子相变(第2版)(英文版)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 世界图书出版公司
  • 9787510084478
  • 126413
  • 2015-01
  • O4
内容简介

  萨奇德夫所著的《量子相变(第2版)(英文版)》是第一本系统介绍量子相变理论的专著,其中部分内容也可作研究生教材。本书内容新颖,涉及凝聚态物理学中广泛关注的许多重要问题。本书叙述简明,将理论模型的阐述与最新实验结果的介绍密切结合。书中着重描写和阐述存在量子相变的一些最简单的相互作用系统的物理性质。全书大部分均忽略了无序效应,而把注意力集中在这样一些系统在非零温度下的动力学性质,深入讨论了以非弹性碰撞为主的量子动力学及输运过程。

目录
From the Preface to the first edition
Preface to the second edition
Part I Introduction
 1 Basic concepts
  1.1 What is a quantum phase transition?
  1.2 Nonzero temperature transitions and crossovers
  1.3 Experimental examples
  1.4 Theoretical models
   1.4.1 Quantum Ising model
   1.4.2 Quantum rotor model
   1.4.3 Physical realizations of quantum rotors
 2 Overview
  2.1 Quantum field theories
  2.2 What's different about quantum transitions?
Part II A first course
 3 Classical phase transitions
  3.1 Mean-field theory
  3.2 Landau theory
  3.3 Fluctuations and perturbation theory
   3.3.1 Gaussian integrals
   3.3.2 Expansion for susceptibility
  Exercises
 4 The renormalization group
  4.1 Gaussian theory
  4.2 Momentum shell RG
  4.3 Field renormalization
  4.4 Correlation functions
  Exercises
 5 The quantum Ising model
  5.1 Effective Hamiltonian method
  5.2 Large-g expansion
   5.2.1 One-particle states
   5.2.2 Two-particle states
  5.3 Small-g expansion
   5.3.1 d=2
   5.3.2 d=l
  5.4 Review
  5.5 The classical Ising chain
   5.5.1 The scaling limit
   5.5.2 Universality
   5.5.3 Mapping to a quantum model: Ising spin in a transverse field
  5.6 Mapping of the quantum Ising chain to a classical Ising model
  Exercises
 6 The quantum rotor model
  6.1 Large-g expansion
  6.2 Small-g expansion
  6.3 The classical XY chain and an O(2) quantum rotor
  6.4 The classical Heisenberg chain and an O(3) quantum rotor
  6.5 Mapping to classical field theories
  6.6 Spectrum of quantum field theory
   6.6.1 Paramagnet
   6.6.2 Quantum critical point
   6.6.3 Magnetic order
  Exercises
 7 Correlations, susceptibilities, and the quantum critical point
  7.1 Spectral representation
   7.1.1 Structure factor
   7.1.2 Linear response
  7.2 Correlations across the quantum critical point
   7.2.1 Paramagnet
   7.2.2 Quantum critical point
   7.2.3 Magnetic order
  Exercises
 8 Broken symmetries
  8.1 Discrete symmetry and surface tension
  8.2 Continuous symmetry and the helicity modulus
   8.2.1 Order parameter correlations
  8.3 The London equation and the superfluid density
   8.3.1 The rotor model
   Exercises
 9 Boson Hubbard model
  9.1 Mean-field theory
  9.2 Coherent state path integral
   9.2.1 Boson coherent states
  9.3 Continuum quantum field theories
  Exercises
Part III Nonzero temperatures
 10 The Ising chain in a transverse field
  10.1 Exact spectrum
  10.2 Continuum theory and scaling transformations
  10.3 Equal-time correlations of the order parameter
  10.4 Finite temperature crossovers
  10.4.1 Low T on the magnetically ordered side, A > 0, T << A
  10.4.2 Low T on the quantum paramagnetic side, A < 0, T << |△|
  10.4.3 Continuum high T, T >> |△|
  10.4.4 Summary
 11 Quantum rotor models: large-N limit
  11.1 Continuum theory and large-N limit
  11.2 Zero temperature
  11.2.1 Quantum paramagnet, g > gc
  11.2.2 Critical point, g = gc
  11.2.3 Magnetically ordered ground state, g < gc
  11.3 Nonzero temperatures
   11.3.1 Low T on the quantum paramagnetic side, g > gc, T << △+
   11.3.2 High T, T>>△+, △_
   11.3.3 Low T on the magnetically ordered side, g < gc, T << △_
  11.4 Numerical studies
 12 The d = 1, 0(N > 3) rotor models
  12.1 Scaling analysis at zero temperature
  12.2 Low-temperature limit of the continuum theory, T << △+
  12.3 High-temperature limit of the continuum theory, △+ << T << J
   12.3.1 Field-theoretic renormalization group
   12.3.2 Computation of Xu
   12.3.3 Dynamics
  12.4 Summary
 13 The d = 2, 0(N ≥ 3) rotor models
  13.1 Low T on the magnetically ordered side, T << ρs
   13.1.1 Computation of ξc
   13.1.2 Computation of τ
   13.1.3 Structure of correlations
  13.2 Dynamics of the quantum paramagnetic and high-T regions
   13.2.1 Zero temperature
   13.2.2 Nonzero temperatures
  13.3 Summary
 14 Physics dose to and above the upper-critical dimension
  14.1 Zero temperature
   14.1.1 Tricritical crossovers
   14.1.2 Field-theoretic renormalization group
  14.2 Statics at nonzero temperatures
   14.2.1 d < 3
   14.2.2 d > 3
  14.3 Order parameter dynamics in d = 2
  14.4 Applications and extensions
 15 Transport in d = 2
  15.1 Perturbation theory
   15.1.1 σ1
   15.1.2 σ11
  15.2 Collisionless transport equations
  15.3 Collision-dominated transport
   15.3.1 ε expansion
   15.3.2 Large-N limit
  15.4 Physical interpretation
  15.5 The AdS/CFT correspondence
   15.5.1 Exact results for quantum critical transport
   15.5.2 Implications
  15.6 Applications and extensions
Part IV Other models
 16 Dilute Fermi and Bose gases
  16.1 Thequantum XX model
  16.2 The dilute spinless Fermi gas
   16.2.1 Dilute classical gas, kBT << |μ|, μ < 0
   16.2.2 Fermi liquid, kBT <<μ, μ > 0
   16.2.3 High-T limit, kBT >> |μ|
  16.3 The dilute Bose gas
   16.3.1 d < 2
   16.3.2 d = 3
   16.3.3 Correlators of ZB in d = 1
  16.4 The dilute spinful Fermi gas: the Feshbach resonance
   16.4.1 The Fermi-Bose model
   16.4.2 Large-N expansion
  16.5 Applications and extensions
 17 Phase transitions of Dirac fermions
  17.1 d-wave superconductivity and Dirac fermions
  17.2 Time-reversal symmetry breaking
  17.3 Field theory and RG analysis
  17.4 Ising-nematic ordering
 18 Fermi liquids, and their phase transitions
  18.1 Fermi liquid theory
  18.1.1 Independence of choice of k0
  18.2 Ising-nematic ordering
   18.2.1 Hertz theory
   18.2.2 Fate of the fermions
   18.2.3 Non-Fermi liquid criticality in d = 2
  18.3 Spin density wave order
   18.3.1 Mean-field theory
   18.3.2 Continuum theory
   18.3.3 Hertz theory
   18.3.4 Fate of the fermions
   18.3.5 Critical theory in d = 2
  18.4 Nonzero temperature crossovers
  18.5 Applications and extensions
 19 Heisenberg spins: fetromagnets and antiferromagnets
  19.1 Coherent state path integral
  19.2 Quantized ferromagnets
  19.3 Antiferromagnets
   19.3.1 Collinear antiferromagnetism and the quantum nonlinear sigma model
   19.3.2 Collinear antiferromagnetism in d = 1
   19.3.3 Collinear antiferromagnetism in d = 2
   19.3.4 Noncollinear antiferromagnetism in d= 2: deconfined spinons and visons
   19.3.5 Deconfined criticality
  19.4 Partial polarization and canted states
   19.4.1 Quantum paramagnet
   19.4.2 Quantized ferromagnets
   19.4.3 Canted and Neel states
   19.4.4 Zero temperature critical properties
  19.5 Applications and extensions
 20 Spin chains: bosonization
  20.1 The XX chain revisited: bosonization
  20.2 Phases of H12
   20.2.1 Sine-Gordon model
   20.2.2 Tomonaga-Luttinger liquid
   20.2.3 Valence bond solid order
   20.2.4 Neel order
   20.2.5 Models with SU(2) (Heisenberg) symmetry
   20.2.6 Critical properties near phase boundaries
  20.3 O(2) rotor model in d = 1
  20.4 Applications and extensions
 21 Magnetic ordering transitions of disordered systems
  21.1 Stability of quantum critical points in disordered systems
  21.2 Griffiths-McCoy singularities
  21.3 Perturbative field-theoretic analysis
  21.4 Metallic systems
  21.5 Quantum Ising models near the percolation transition
   21.5.1 Percolation theory
   21.5.2 Classical dilute Ising models
   21.5.3 Quantum dilute Ising models
  21.6 The disordered quantum Ising chain
  21.7 Discussion
  21.8 Applications and extensions
 22 Quantum spin glasses
  22.1 The effective action
   22.1.1 Metallic systems
  22.2 Mean-field theory
  22.3 Applications and extensions
 References
 Index