- 科学出版社
- 9787030318138
- 1-5
- 125815
- 0045179341-8
- 平装
- B5
- 2022-12
- 330
- 246
- 理学
- 数学
- O151.21
- 数学
- 本科
内容简介
本书共分六章,第一章线性代数概要与提高,总结并拓展了后续章节需要的线性方程组和矩阵的基本知识,给出了矩阵与线性方程组的几个应用实例;第二章矩阵与线性变换,讨论了子空间与直和分解及内积空间,详细探讨了线性变换与矩阵的关系,简要介绍了构造新线性空间的几种方法,例举了子空间、正交性、线性变换、张量积等的应用;第三章特征值与矩阵的Jordan标准形,证明了Schur三角化定理与Cayley-Hamilton定理,给出了矩阵在相似变换下的最简形式即Jordan标准形,讨论了特征值估计的盖尔圆盘定理,介绍了特征值与特征向量在统计学和经济学中的一些应用;第四章正规矩阵与矩阵的分解,介绍了正规矩阵及其几何意义,讨论了分解矩阵的几种方法以及应用;第五章矩阵函数及其微积分,介绍了向量范数与矩阵范数、矩阵幂级数、矩阵函数的微积分和应用;第六章广义逆矩阵,介绍了最常用的几种广义逆及其在解线性方程组等方面的应用.书后附有主要参考书目和汉英名词索引.
目录