- 高等教育出版社
- 9787040224207
- 1版
- 104795
- 46255123-5
- 精装
- B5
- 2012-09-18
- 800
- 692
- 工学
- 材料科学与工程
- TG156
- 材料类
- 研究生及以上
本书是热处理工艺学专著,包括工具、模具、刀具、机器零件、大锻件等典型工件的热处理,渗氮、渗碳、氮碳共渗等化学热处理以及表面强化技术等内容。书中充实了加热和冷却过程中温度场数值分析、温度场与相变耦合、化学热处理热力学、物质传递数学模型、渗层组织与性能等基础知识,目的在于推动热处理摆脱技艺型技术的落后状态,向着严格的科学计算与定量精确控制方向跨越。
本书包含作者长期积累的研究成果和生产实践经验,结合典型案例阐述分析和解决热处理生产实际问题的思路和方法,因而具有基础性与实用性并重的特色。
本书可作为高等学校材料科学与工程学科的研究生教学参考书,或热处理工程师的培训材料,也可供从事热处理生产、科研和教学的人员参考。
第一章 导论
1.1 热处理在制造业中的作用
1.1.1 热处理技术的进步推动制造业的创新
1.1.2 热处理是提高产品寿命和性能的决定性因素
1.1.3 改进预先热处理工艺可大幅度降低零件的加工成本
1.2 热处理技术的特点
1.2.1 合理的热处理工艺应视工件特点而异
1.2.2 没有最好,只有更好
1.2.3 质量控制难度大
1.2.4 从“技艺型”向“高度知识密集型”技术方向发展
1.3 怎样搞好热处理
1.3.1 质量第一,严字当头
1.3.2 重视理论对热处理生产的指导作用,将基础研究成果转化为实用技术
1.3.3 重视生产实践
1.3.4 掌握生产流程中各个环节对热处理及材料质量影响的规律,以全局的视野分析和解决问题
1.3.5 用信息技术改造和提升热处理技术
参考文献
第二章 金属材料的加热和冷却
2.1 加热和冷却过程中的传热学计算
2.1.1 近似计算法
2.1.2 薄件加热的传热计算
2.1.3 导热偏微分方程
2.1.4 导热偏微分方程的分析解
2.1.5 求解非稳态温度场的有限元法
2.1.6 温度场与相变的耦合
2.1.7 温度场有限元分析应用实例
2.2 加热介质
2.2.1 可控气氛加热
2.2.2 真空加热
2.3 钢的冷却
2.3.1 钢件热处理的冷却过程
2.3.2 钢的淬透性
2.3.3 淬火冷却介质
参考文献
第三章 工具热处理概述
3.1 工具热处理的特点
3.2 工具钢的冶金质量及冶金厂的热处理
3.3 工具钢的改锻
3.4 工具钢的预先热处理
3.4.1 原始组织对加工工艺性能的影响
3.4.2 退火组织对过共析工具钢淬火后的组织与性能的
3.4.3 工具钢球化退火工艺
3.5 工具钢的最终热处理
3.5.1 淬火加热
3.5.2 淬火冷却
3.5.3 微畸变淬火
3.5.4 回火
3.5.5 稳定化处理
3.6 硬质合金与钢结硬质合金
3.6.1 硬质合金
3.6.2 钢结硬质合金及其热处理
3.7 工具的化学热处理与表面强化
3.7.1 化学热处理与表面涂层的作用
3.7.2 化学热处理与表面涂层在工具中的应用
3.7.3 超硬涂层在工具中的应用
参考文献
第四章 高速钢刀具热处理
4.1 退火
4.2 淬火
4.2.1 淬火加热用设备的主要优缺点
4.2.2 淬火加热温度
4.2.3 淬火显微组织检验及质量控制
4.2.4 淬火加热时间
4.2.5 淬火冷却
4.3 回火
4.3.1 回火温度与时间的互换性
4.3.2 常规回火工艺
4.3.3 回火质量的检测
4.3.4 大型复杂件的回火
4.3.5 快速回火
4.4 冷处理
4.5 高速钢的化学及表面处理
4.5.1 蒸汽处理
4.5.2 渗氮
4.5.3 渗碳
4.5.4 气相沉积
4.5.5 激光热处理
参考文献
第五章 滚动轴承用高碳铬轴承钢的热处理及质量控制
5.1 滚动轴承用钢的工作条件及基本性能要求
5.2 高碳铬轴承钢的冶炼技术概述
5.2.1 真空脱气及炉外精炼技术
5.2.2 真空冶炼
5.2.3 其他冶炼技术
5.2.4 发达国家的冶炼技术
5.3 高碳铬轴承钢的成分与原材料检验
5.3.1 化学成分
5.3.2 成分设计特点
5.3.3 原材料检验
5.4 轴承钢的组织转变
5.4.1 Fe-C-Cr平衡状态图
5.4.2 加热时的转变
5.4.3 奥氏体晶粒度及其控制
5.4.4 GCr15钢过冷奥氏体的转变
5.4.5 GCr15钢在回火过程中的组织转变和应力变化
5.5 高碳铬轴承钢滚动轴承零件热处理工艺概述
5.5.1 轴承零件加工、热处理工序及其作用
5.5.2 正火工艺
5.5.3 球化退火工艺
5.5.4 淬火工艺
5.5.5 冷处理
5.5.6 回火和附加回火工艺研究
5.6 影响轴承寿命的材料因素及其控制
5.6.1 影响轴承寿命的材料因素
5.6.2 影响轴承寿命的材料因素的控制
5.7 其他较常用的轴承材料
5.7.1 中碳轴承钢
5.7.2 渗碳轴承钢
5.7.3 不锈轴承钢
5.7.4 高温轴承钢
5.7.5 其他较常用的钢种或合金
5.7.6 保持器常用的金属材料
参考文献
第六章 热作模具材料及其热处理
6.1 热作模具材料的主要性能要求
6.1.1 热作模具钢的分类
6.1.2 热作模具材料的使用性能要求
6.1.3 热作模具材料的工艺性能要求
6.2 热作模具材料的成分特点
6.3 低耐热高韧性热作模具钢及其热处理
6.3.1 5CrNiMo、5CrMnMo钢
6.3.2 其他低耐热高韧性热作模具钢
6.4 中耐热热作模具钢及其热处理
6.4.1 4Cr5MoSiV、4Cr5MoSiV1钢
6.4.2 Cr-Mo系钢(3Cr-3Mo系)
6.4.3 其他中耐热热作模具钢
6.5 高耐热热作模具钢及其热处理
6.5.1 3Cr2W8V钢
6.5.2 其他高耐热热作模具钢
6.6 特殊用途的热作模具钢
6.6.1 奥氏体耐热钢
6.6.2 析出沉淀硬化型热作模具钢
6.6.3 高速钢、基体钢
6.6.4 马氏体时效钢
6.6.5 高温合金、难熔合金
参考文献
第七章 冷作模具材料及其热处理
7.1 冷挤压模
7.1.1 黑色金属冷挤压凸模的选材
7.1.2 高速钢碳化物偏析的控制
7.1.3 冷挤压凸模的淬火与回火
7.1.4 冷挤压凸模的表面强化
7.1.5 冷挤压凹模的选材和热处理
7.2 冷镦模、冷锻模
7.3 冲裁模
7.3.1 高铬莱氏体钢的锻造
7.3.2 高铬莱氏体钢的退火
7.3.3 高铬莱氏体钢的淬火与回火
7.3.4 冲裁模热处理畸变的控制
参考文献
第八章 机器零件的热处理
8.1 零件的制造过程
8.2 结构钢机器零件的加工工艺过程
8.3 机器零件热处理工艺选择的一般原则
8.4 零件设计及机械加工与热处理工艺的关系
8.4.1 选材
8.4.2 拟定合理的热处理技术条件
8.4.3 合理的零件结构设计
8.4.4 机械加工与热处理的正确配合
8.4.5 热处理与切削加工性的关系
8.5 典型零件热处理工艺举例
8.5.1 连杆螺栓———要求整体具有良好综合力学性能的零件
8.5.2 活塞销———耐磨、抗弯曲疲劳的零件
8.5.3 曲轴———耐磨、抗弯曲疲劳、扭转疲劳和易发生热处理畸变的零件
8.5.4 连杆———承受拉压疲劳的零件
8.5.5 齿轮———量大面广、热处理形式多样化的零件
8.5.6 轴类零件———大长径比的高精度零件
8.5.7 机床零件———要求高精度、稳定性好的零件
8.5.8 在满足使用性能要求的前提下通过改变热处理方式来优化制造方法的几个例子
8.5.9 热处理定形处理的薄板、薄片件
参考文献
第九章 大锻件的热处理
9.1 概述
9.1.1 大锻件及其应用
9.1.2 大锻件热处理的特点
9.2 冶金因素对大锻件质量的影响
9.2.1 冶炼质量对大锻件质量的影响
9.2.2 铸锭工艺对大锻件质量的影响
9.2.3 锻造工艺对大锻件质量的影响
9.3 大锻件的第一热处理
9.3.1 第一热处理的目的
9.3.2 大锻件中的氢和白点
9.3.3 大锻件的晶粒细化问题
9.3.4 大锻件的第一热处理工艺
9.4 大锻件的最终热处理
9.4.1 概述
9.4.2 大锻件的淬火、正火
9.4.3 大锻件的回火
9.4.4 大锻件的最终热处理工艺实例
参考文献
第十章 气体渗碳
10.1 概述
10.2 气体渗碳与传统的碳势控制方法
10.3 气体渗碳的平衡问题
10.4 多组分体系中几个反应的相互影响
10.5 碳势控制方法的讨论
10.6 钢中碳的活度及合金元素的影响
10.7 气体渗碳过程中的物质传递问题
10.7.1 物质传递数学模型及其解析解
10.7.2 数值解法及其应用
10.7.3 传递系数的测定
10.7.4 简化的近似计算方法
10.8 渗碳工艺
10.8.1 渗碳温度的选择
10.8.2 渗碳时间
10.8.3 一段渗碳、两段渗碳及动态碳势控制
10.8.4 渗碳工艺的发展
10.9 渗碳后的热处理
10.9.1 直接淬火法
10.9.2 重新加热淬火
10.9.3 回火
10.9.4 高合金钢渗碳件的热处理
10.10 内氧化的热力学条件
10.11 碳化物形态的控制
参考文献
第十一章 渗氮
11.1 概述
11.2 渗氮层的组织及性能
11.2.1 典型的渗氮层显微组织
11.2.2 Fe-N状态图
11.2.3 纯铁和碳钢的渗层组织
11.2.4 合金钢渗氮的组织和扩散层中的沉淀硬化
11.2.5 疲劳强度
11.2.6 抗腐蚀性
11.3 渗氮热力学
11.3.1 氨分解反应
11.3.2 Fe-N系中氮的活度
11.3.3 氮势
11.3.4 渗氮气体与Fe-N系中各相平衡的条件
11.3.5 氮势与氨分解率及炉气成分的关系
11.4 合金钢渗氮的热力学问题
11.5 可控渗氮的动力学问题
11.5.1 氮势门槛值
11.5.2 氮势门槛值曲线的理论公式
11.5.3 测定门槛值曲线的简捷方法
11.5.4 渗氮过程物质传递数学模型的数值解法
11.6 渗氮工艺
11.6.1 常规渗氮工艺
11.6.2 可控渗氮工艺
11.6.3 微型计算机氮势动态控制
11.6.4 渗氮件的变形问题
11.6.5 钢的原始组织对渗氮后质量的影响
11.7 渗氮工艺的发展
11.7.1 表面纳米化渗氮
11.7.2 渗氮氧化复合处理
11.7.3 短时渗氮与脉冲渗氮
11.7.4 高速钢的短时渗氮
11.7.5 深层渗氮
参考文献
第十二章 氮碳共渗
12.1 铁素体氮碳共渗
12.1.1 气相反应
12.1.2 Fe-N-C状态图
12.1.3 铁素体氮碳共渗的渗层组织
12.1.4 高速钢气体铁素体氮碳共渗组织
12.1.5 气体铁素体氮碳共渗的渗层性能
12.1.6 铁素体氮碳共渗与短时渗氮的比较
12.2 奥氏体氮碳共渗
12.2.1 气相反应
12.2.2 渗层组织
12.2.3 奥氏体氮碳共渗工艺
12.2.4 奥氏体渗氮
参考文献
第十三章 表面工程技术
13.1 传统工艺
13.1.1 化学与表面热处理
13.1.2 化学与电化学沉积
13.1.3 化学、电化学转化
13.1.4 表面涂覆技术
13.1.5 表面形变强化
13.2 物理气相沉积
13.2.1 真空蒸镀
13.2.2 溅射镀
13.2.3 离子镀
13.3 化学气相沉积
13.3.1 化学气相沉积原理
13.3.2 常压化学气相沉积
13.3.3 低压化学气相沉积
13.3.4 等离子体化学气相沉积
13.3.5 金属有机化学气相沉积
13.3.6 激光化学气相沉积
13.4 高能束表面改性技术
13.4.1 激光束表面改性技术
13.4.2 电子束表面改性技术
13.4.3 离子注入
13.5 其他表面工程技术
13.5.1 外延技术
13.5.2 溶胶-凝胶法
13.5.3 表面工程复合处理技术
参考文献
Chapter1 Introduction
1.1 The role of heat treatment in the manufacture industry
1.1.1 Innovation in manufacture industry promoted by the heattreatment technology progress
1.1.2 Heat treatment—the decisive factor to improve productsperformance and life-span
1.1.3 Dramatic reduction of products processing cost based on theoptimization of pre-heat treatment technology
1.2 Characteristics of heat treatment technology
1.2.1 Sound heat treatment technology based on the characteristicsof workpieces
1.2.2 Seeking for greater perfection
1.2.3 Great difficulties for quality control
1.2.4 Span from skill to knowledge intensive technology
1.3 How to do well in the heat treatment
1.3.1 Quality first and strict management
1.3.2 Conversion from research achievements to practicaltechnology
1.3.3 Manufacture practice first
1.3.4 Global solution based on the rules between heat treatmentparameters and performance
1.3.5 Reform and advance of heat treatment technology byinformation technology
References
Chapter2 Heating and cooling of metals
2.1 Heat transfer calculation during heating and cooling process
2.1.1 Approximation method
2.1.2 Heat transfer calculation for the heating of thin-wallworkpieces
2.1.3 The partial differential equation of heat conduction
2.1.4 The analytical solution for the heat conduction PDE
2.1.5 The finite element method—solution for the transienttemperature field
2.1.6 The coupling between temperature field and phasetransformation
2.1.7 The cases of temperature field FEM analysis
2.2 Heating media
2.2.1 Controllable atmosphere heating
2.2.2 Vacuum heating
2.3 Cooling of steels
2.3.1 Cooling process of steels heat treatment
2.3.2 Hardenability of steels
2.3.3 Quenching media
References
Chapter3 Brief introduction for tools heat treatment
3.1 Main characteristics for tools heat treatment
3.2 The metallurgy quality of tool steels and their heat treatment inmetallurgic plants
3.3 Re-forging of tool steels
3.4 Pre-heat treatment for tool steels
3.4.1 The effects of original structure to processing performance
3.4.2 The effects of annealing structure to the structure andproperty of quenched hypereutectoid tool steels
3.4.3 Spheroidal annealing process of tool steels
3.5 The final heat treatment of tool steels
3.5.1 The heating process for quenching
3.5.2 The cooling process for quenching
3.5.3 The quenching of tools with micro-distortion
3.5.4 Tempering of quenched tool steels
3.5.5 The stabilization processing
3.6 Hard alloys and hard alloy steels
3.6.1 Hard alloys
3.6.2 Hard alloy steels and their heat treatment
3.7 The chemical heat treatment and surface strengthening for tools
3.7.1 The roles of the chemical heat treatment and surfacecoatings
3.7.2 Applications of the chemical heat treatment and surfacecoatings in tools
3.7.3 Applications of ultrahard coating in tools
References
Chapter4 Heat treatment for cutting tools of high speed steel
4.1 Annealing
4.2 Quenching
4.2.1 The advantages and disadvantages of heating facilities
4.2.2 Heating temperature of quenching
4.2.3 Inspection of quenched microstructure and quality control
4.2.4 The heating time for quenching
4.2.5 The cooling process of quenching
4.3 Tempering
4.3.1 Exchangeability of tempering temperature and duration
4.3.2 Traditional tempering process
4.3.3 Inspection of the tempering quality
4.3.4 The tempering of the large and complicate shapedworkpieces
4.3.5 Rapid tempering
4.4 Cryogenic processing
4.5 Chemical and surface treatment of high speed steels
4.5.1 Vapor processing
4.5.2 Nitriding
4.5.3 Carburizing
4.5.4 PVD and CVD
4.5.5 Laser processing
References
Chapter5 Heat treatment and quality control of the high-carbonchromium rolling bearing steel
5.1 The running conditions and basic performance requirements for therolling bearing steel
5.2 Summarization of smelting technology of the high-carbon chromiumrolling bearing steel
5.2.1 Vacuum degassing and external refining techniques
5.2.2 Vacuum melting technique
5.2.3 Other melting techniques
5.2.4 The melting techniques in advanced countries
5.3 Composition and primary material inspection for the high-carbonchromium rolling bearing steel
5.3.1 Chemical composition
5.3.2 The characters of composition design
5.3.3 Primary material inspection
5.4 Phase transformation in the rolling bearing steel
5.4.1 The equilibrium state chart for Fe-C-Cr
5.4.2 The phase transformation during heating process
5.4.3 The austenite grain size and its control
5.4.4 The decomposition of super-cooled austenite in GCr15steel
5.4.5 The structure and stress evolution during the tempering ofGCr15 steel
5.5 Heat treatment process summarization of the rolling bearing parts
5.5.1 The machining and heat treatment procedures for bearing partsand their effects
5.5.2 The normaling process
5.5.3 The spheroidal annealing process
5.5.4 The quenching process
5.5.5 The cryogenic processing
5.5.6 Investigation on tempering and additional tempering
5.6 The materials factors affecting the bearing life-span and theircontrol
5.6.1 The materials factors affecting the bearing life-span
5.6.2 The control of the materials factors affecting the bearinglife-span
5.7 Other commonly used bearing materials
5.7.1 The medium carbon bearing steel
5.7.2 The carburization bearing steel
5.7.3 The stainless bearing steel
5.7.4 The high temperature bearing steel
5.7.5 Other commonly used steels or alloys
5.7.6 The commonly used metallic materials for the retainer
References
Chapter6 Materials and heat treatment for the hot die
6.1 The main performance requirements for the hot die material
6.1.1 The classification of hot die steels
6.1.2 The performance requirements for the hot die material
6.1.3 The processing property requirements for the hot diematerial
6.2 The composition characters of the hot die material
6.3 The low heat-resisting and high ductility hot die steel and its heattreatment
6.3.1 Steel 5CrNiMo and 5CrMnMo (T20103,T20102)
6.3.2 Other low heat-resisting and high ductility hot die steel
6.4 The medium heat-resisting hot die steel and its heat treatment
6.4.1 Steel 4Cr5MoSiV and 4Cr5MoSiV1 (T20501, T20502)
6.4.2 Cr-Mo steels (3Cr-3Mo series)
6.4.3 Other medium heat-resisting hot die steel
6.5 The high heat-resisting hot die steel and its heat treatment
6.5.1 Steel 3Cr2W8V
6.5.2 Other high heat-resisting hot die steel
6.6 The hot die steels for special purpose
6.6.1 The austenitic heat-resisting steel
6.6.2 The precipitation hardening hot die steel
6.6.3 The high speed steel and matrix steel
6.6.4 The maraging steel
6.6.5 The high-temperature alloy and refractory alloy
References
Chapter7 Materials and heat treatment of the cold-working die
7.1 The pressing cold-working die
7.1.1 The material selection of male die for ferrous metal cold-extrusion
7.1.2 The segregation control of carbide in the high speed steel
7.1.3 The quenching and tempering of the male die for cold-extrusion
7.1.4 The surface strengthening of the male die for cold-extrusion
7.1.5 The material selection and heat treatment of the female die forcold-extrusion
7.2 The cold upset die and cold forging die
7.3 The blanking and cutting die
7.3.1 The forging of high chromium ledeburite steel
7.3.2 The annealing of high chromium ledeburite steel
7.3.3 The quenching and tempering of high chromium ledeburitesteel
7.3.4 The control of heat treatment distortion for the blanking andcutting die
References
Chapter8 Heat treatment for machine parts
8.1 The manufacture process of machine parts
8.2 The manufacture process of machine parts of structural steel
8.3 The basic principles of heat treatment selection for machine parts
8.4 The relationship between design, machining and heat treatment ofmachine parts
8.4.1 Materials selection
8.4.2 Drafting of suitable heat treatment specification
8.4.3 Reasonable parts structure design
8.4.4 Accurate matching between machining and heat treatment
8.4.5 The relationship between heat treatment and machinability
8.5 The heat treatment processes for the typical parts
8.5.1 Connecting-rod bolts—parts requiring general mechanicalproperty for whole body
8.5.2 Piston pin—parts requiring wear-resisting and resisting ofbending fatigue
8.5.3 Crankshaft—parts requiring wear-resisting, resisting ofbending fatigue, and low heat treatment distortion
8.5.4 Connecting rods—parts receiving tension-compressionfatigue
8.5.5 Gear—parts with mass production and diversity of heattreatment
8.5.6 Shaft parts—parts with large slenderness ratio and highshape accuracy
8.5.7 Parts for machine tool—parts requiring high shape accuracyand stabilization
8.5.8 The cases of manufacture process optimization throughheat treatment
8.5.9 The thin plank and thin section parts shape fixed by heattreatment
References
Chapter9 Heat treatment of the large forging
9.1 Introduction
9.1.1 Large forgings and their applications
9.1.2 The characters of the large forging heat treatment
9.2 The effects of metallurgical factors on the quality of the largeforging
9.2.1 The effects of smelting quality on the quality of the largeforging
9.2.2 The effects of ingot casting on the quality of the largeforging
9.2.3 The effects of forging process on the quality of the largeforging
9.3 First heat treatment of the large forging
9.3.1 The purpose of first heat treatment
9.3.2 The hydrogen and white spot in the large forging
9.3.3 The grain refinement in the large forging
9.3.4 The first heat treatment process for the large forging
9.4 The final heat treatment of the large forging
9.4.1 Introduction
9.4.2 The quenching and normaling of the large forging
9.4.3 The tempering of the large forging
9.4.4 The examples of final heat treatment of the large forging
References
Chapter10 Gaseous carburization
10.1 Introduction
10.2 Gaseous carburization and traditional carbon potential controlmethod
10.3 The equilibrium in gaseous carburization
10.4 The interactions among different reactions in the multi-componentsystem
10.5 Discussion of carbon potential control method
10.6 The carbon activity in steels and the effects of alloy elements
10.7 The mass transfer during the gaseous carburization
10.7.1 The mathematical model of mass transfer and its analyticalsolution
10.7.2 The numerical solution and its application
10.7.3 The measurement of mass transfer coefficient
10.7.4 The simplified approximation method
10.8 Carburization process
10.8.1 The temperature selection for the carburization
10.8.2 The duration selection for the carburization
10.8.3 One-stage carburization, two-stage carburization anddynamic carbon potential control carburization
10.8.4 The development of carburization process
10.9 The heat treatment after carburization
10.9.1 Direct quenching
10.9.2 Re-heating and quenching
10.9.3 Tempering
10.9.4 The heat treatment of carburized high-alloy steel
10.10 The thermodynamic condition for internal oxidation
10.11 The control of carbide morphology
References
Chapter11 Nitriding
11.1 Introduction
11.2 The nitriding microstructure and property
11.2.1 The typical nitriding microstructure
11.2.2 The equilibrium state chart of Fe-N
11.2.3 The nitriding microstructure in iron and carbon steels
11.2.4 The nitriding microstructure in alloyed steel and theprecipitation hardening in the diffusion layer
11.2.5 Fatigue strength
11.2.6 Corrosion resistance
11.3 The nitriding thermodynamics
11.3.1 The decomposition of ammonia
11.3.2 The nitrogen activity in Fe-N system
11.3.3 Nitrogen potential
11.3.4 Nitriding atmosphere and the equilibrium condition betweencomponents in Fe-N system
11.3.5 The relationship among the nitrogen potential, ammoniadecomposition rate and furnace compositions
11.4 The thermodynamics of alloyed steel nitriding
11.5 The kinetics of controllable nitriding
11.5.1 The nitrogen potential threshold value
11.5.2 The theoretical formula of nitrogen potential thresholdvalue
11.5.3 The short-cut method for testing of nitrogen potentialthreshold value
11.5.4 The numerical solution of the mass transfer mathematicalmodel during nitriding process
11.6 Nitriding process
11.6.1 Traditional nitriding process
11.6.2 Controllable nitriding process
11.6.3 Dynamic nitrogen potential control by microcomputer
11.6.4 The distortion of nitrided parts
11.6.5 The effects of the original structure in steels on thequality of nitrided parts
11.7 The development of nitriding process
11.7.1 The nitriding of surface nanocrystallized parts
11.7.2 The hybrid process of nitriding and oxidation
11.7.3 Short-time nitriding and pulse nitriding
11.7.4 Short-time nitriding of high speed steels
11.7.5 Deep level nitriding process
References
Chapter12 Nitro-carburization
12.1 Ferrite nitro-carburization
12.1.1 Gas phase reactions
12.1.2 The equilibrium state chart of Fe-N-C
12.1.3 The microstructure in the ferrite nitro-carburized layer
12.1.4 The microstructure in the ferrite nitro-carburized layer ofthe high speed steel
12.1.5 The property of the ferrite nitro-carburized layer
12.1.6 The comparison between the ferrite nitro-carburization andshort-time nitriding
12.2 Austenite nitro-carburization
12.2.1 Gas phase reactions
12.2.2 The microstructure in the austenite nitro-carburizedlayer
12.2.3 The austenite nitro-carburization process
12.2.4 Austenite nitriding
References
Chapter13 Surface engineering technology
13.1 Traditional technology
13.1.1 Chemical and surface heat treatment
13.1.2 Chemical and electrochemistry deposition
13.1.3 Chemical and electrochemistry conversion
13.1.4 Surface coating technology
13.1.5 Surface deformation strengthening
13.2 Physical vapor deposition (PVD)
13.2.1 Vacuum evaporation
13.2.2 Sputtering plating
13.2.3 Ion plating
13.3 Chemical vapor deposition (CVD)
13.3.1 CVD fundamentals
13.3.2 Normal pressure CVD
13.3.3 Low pressure CVD
13.3.4 Plasma chemical vapor deposition (PCVD)
13.3.5 Metal organic chemical vapor deposition(MOCVD)
13.3.6 Laser chemical vapor deposition (LCVD)
13.4 High energy beam surface modification technology
13.4.1 Laser beam surface modification technology
13.4.2 Electron beam surface modification technology
13.4.3 Ion implantation
13.5 Other surface engineering technology
13.5.1 Epitaxial technology
13.5.2 Sol-gel method
13.5.3 The hybrid treatment technology in surface engineering
References