概率论与数理统计 / 新世纪新理念高等院校数学教学改革与教材建设精品教材
¥21.60定价
作者: 左国新
出版时间:2015-08
出版社:华中师范大学出版社
- 华中师范大学出版社
- 9787562260868
- 1-2
- 86562
- 51165640-7
- 平装
- 16开
- 2015-08
- 273
- 理学
- 数学
- O21
- 数学
- 本科
内容简介
左国新编著的《概率论与数理统计(普通高等教育十二五规划教材)》是高等院校理工类专业的必修课。本书由8章组成,内容包括:概率论的基本概念、随机变量及概率分布、随机变量的数字特征、大数定律与中心极限定理、样本与抽样分布、参数估计和假设检验、方差分析与回归分析、统计计算与应用。各章最后均设有思考题、综合题及精选的考研真题。全书取材的深广度合适,强调直观性,注重可读性,突出基本思想与方法,符合大学本科对本门课程的教学要求与实际需要。
《概率论与数理统计(普通高等教育十二五规划教材)》适宜作为高等学校工科、理科(非数学专业)、管理学科等各专业的教材,也可供工程技术人员和自学者阅读、参考。
《概率论与数理统计(普通高等教育十二五规划教材)》适宜作为高等学校工科、理科(非数学专业)、管理学科等各专业的教材,也可供工程技术人员和自学者阅读、参考。
目录
第1章 概率论的基本概念
1.1随机试验与事件
1.1.1样本空间与事件
1.1.2事件的关系与运算
1.2事件发生的概率
1.2.1频率与概率
1.2.2古典概率模型
1.2.3几何概率模型
1.3条件概率及概率计算公式
1.3.1条件概率
1.3.2全概率公式和贝叶斯公式
1.4事件的独立性
1.4.1事件独立性的概念
1.4.2应用举例
本章小结
习题1
第2章 随机变量及概率分布
2.1随机变量
2.1.1随机变量的概念及其分类
2.1.2随机变量的分布函数
2.2连续型随机变量
2.2.1概率密度函数
2.2.2常见的连续型分布
2.3离散型随机变量
2.3.1概率分布函数
2.3.2常见离散型分布
2.4随机变量函数的分布
2.4.1离散型随机变量的函数
2.4.2连续型随机变量的函数
2.5多维随机变量
2.5.1联合概率分布函数及边缘概率分布函数
2.5.2条件分布及随机变量的独立性
2.5.3多维随机变量函数的分布
本章小结
习题2。
第3章 随机变量的数字特征
3.1数学期望
3.1.1数学期望的概念
3.1.2数学期望的性质
3.2方差
3.2.1方差的概念
3.2.2方差的性质
3.3其他数字特征
3.3.1协方差与相关系数
3.3.2原点矩和中心矩
3.3.3特征函数和矩母函数
本章小结
习题3
第4章 大数定律与中心极限定理
4.1大数定律
4.1.1大数定律
4.1.2随机变量序列的收敛性
4.2中心极限定理
4.2.1中心极限定理
4.2.2中心极限定理的应用
本章小结
习题4
第5章 样本与抽样分布
5.1样本及统计量
5.1.1总体和样本
5.1.2统计量及性质
5.2经验分布函数
5.2.1次序统计量
5.2.2验分布函数
5.3抽样分布
5.3.1三个重要分布
5.3.2.态总体统计量的分布
5.4直方图和盒形图
5.4.1直方图
5.4.2盒形图
本章小结
习题5
第6章 参数估计和假设检验
6.1参数估计
6.1.1点估计
6.1.2估计量的评价
6.2区间估计
6.2.1正态总体假设下的参数区间估计
6.2.2参数估计与区间估计的关系
6.3假设检验
6.3.1假设检验的思想和步骤
6.3.2正态总体参数的假设检验
6.3.3分布拟合检验
本章小结
习题6
第7章 方差分析与回归分析
7.1方差分析的概念及方法
7.1.1单因素方差分析
7.1.2多因素方差分析
7.2回归分析
7.2.1一元线性回归模型
7.2.2多元线性回归模型
本章小结
习题7
第8章 统计计算与应用
8.1R软件介绍
8.1.1R软件的安装与使用
8.1.2R软件中的常用程序包
8.2常用概率统计函数
8.2.1常用概率函数
8.2.2常用统计模型及函数-
8.3图形功能
8.3.1一般图形函数l
8.3.2图形参数
本章小结
习题8
附录
参考文献
1.1随机试验与事件
1.1.1样本空间与事件
1.1.2事件的关系与运算
1.2事件发生的概率
1.2.1频率与概率
1.2.2古典概率模型
1.2.3几何概率模型
1.3条件概率及概率计算公式
1.3.1条件概率
1.3.2全概率公式和贝叶斯公式
1.4事件的独立性
1.4.1事件独立性的概念
1.4.2应用举例
本章小结
习题1
第2章 随机变量及概率分布
2.1随机变量
2.1.1随机变量的概念及其分类
2.1.2随机变量的分布函数
2.2连续型随机变量
2.2.1概率密度函数
2.2.2常见的连续型分布
2.3离散型随机变量
2.3.1概率分布函数
2.3.2常见离散型分布
2.4随机变量函数的分布
2.4.1离散型随机变量的函数
2.4.2连续型随机变量的函数
2.5多维随机变量
2.5.1联合概率分布函数及边缘概率分布函数
2.5.2条件分布及随机变量的独立性
2.5.3多维随机变量函数的分布
本章小结
习题2。
第3章 随机变量的数字特征
3.1数学期望
3.1.1数学期望的概念
3.1.2数学期望的性质
3.2方差
3.2.1方差的概念
3.2.2方差的性质
3.3其他数字特征
3.3.1协方差与相关系数
3.3.2原点矩和中心矩
3.3.3特征函数和矩母函数
本章小结
习题3
第4章 大数定律与中心极限定理
4.1大数定律
4.1.1大数定律
4.1.2随机变量序列的收敛性
4.2中心极限定理
4.2.1中心极限定理
4.2.2中心极限定理的应用
本章小结
习题4
第5章 样本与抽样分布
5.1样本及统计量
5.1.1总体和样本
5.1.2统计量及性质
5.2经验分布函数
5.2.1次序统计量
5.2.2验分布函数
5.3抽样分布
5.3.1三个重要分布
5.3.2.态总体统计量的分布
5.4直方图和盒形图
5.4.1直方图
5.4.2盒形图
本章小结
习题5
第6章 参数估计和假设检验
6.1参数估计
6.1.1点估计
6.1.2估计量的评价
6.2区间估计
6.2.1正态总体假设下的参数区间估计
6.2.2参数估计与区间估计的关系
6.3假设检验
6.3.1假设检验的思想和步骤
6.3.2正态总体参数的假设检验
6.3.3分布拟合检验
本章小结
习题6
第7章 方差分析与回归分析
7.1方差分析的概念及方法
7.1.1单因素方差分析
7.1.2多因素方差分析
7.2回归分析
7.2.1一元线性回归模型
7.2.2多元线性回归模型
本章小结
习题7
第8章 统计计算与应用
8.1R软件介绍
8.1.1R软件的安装与使用
8.1.2R软件中的常用程序包
8.2常用概率统计函数
8.2.1常用概率函数
8.2.2常用统计模型及函数-
8.3图形功能
8.3.1一般图形函数l
8.3.2图形参数
本章小结
习题8
附录
参考文献