注册 登录 进入教材巡展
#
  • #
  • #

出版时间:2010-07-15

出版社:高等教育出版社

以下为《数学分析(第四版)((上册)》的配套数字资源,这些资源在您购买图书后将免费附送给您:
  • 高等教育出版社
  • 9787040295665
  • 4
  • 77236
  • 44214509-0
  • 平装
  • 异16开
  • 2010-07-15
  • 430
  • 344
  • 理学
  • 数学
  • O17
  • 数学类
  • 本科
作者简介
庞学诚,长期从事大学生基础课程的教学,主讲过数学分析、复变函数、高等数学、复变函数论等课程。近几年为数学系理科基地班主讲数学分析和复变函数,主持理科基地班学生的课外学习小组和“数学分析”学习园地工作。
查看全部
内容简介

本书是普通高等教育“十一五”国家级规划教材。内容包括实数集与函数、数列极限、函数极限、函数的连续性、导数和微分、微分中值定理及其应用、实数的完备性、不定积分、定积分、定积分的应用、反常积分等,附录为微积分学简史、实数理论、积分表。

本次修订认真总结了前三版的编写经验,特别对第三版的内容进行了细致的分析,听取了部分使用学校的意见,对第三版的部分内容作了适当调整;实数理论基本定理出现的先后次序作了一些变化;增加了内闭一致收敛的概念,调整了与之有关的内容;适当增加了一些技巧性要求较高的例题,以方便学生学习。第四版仍然保持了教材前三版“内容选取适当,深入浅出,易学易教”的特点。

本书可作为高等学校教学类专业的教材使用。

目录

 第一章 实数集与函数
  §1 实数
   一 实数及其性质
   二 绝对值与不等式
  §2 数集·确界原理
   一 区间与邻域
   二 有界集·确界原理
  §3 函数概念
   一 函数的定义
   二 函数的表示法
   三 函数的四则运算
   四 复合函数
   五 反函数
   六 初等函数
  §4 具有某些特性的函数
   一 有界函数
   二 单调函数
   三 奇函数和偶函数
   四 周期函数
 第二章 数列极限
  §1 数列极限概念
  §2 收敛数列的性质
  §3 数列极限存在的条件
 第三章 函数极限
  §1 函数极限概念
   一 x趋于∞时函数的极限
   二 x趋于x0时函数的极限
  §2 函数极限的性质
  §3 函数极限存在的条件
  §4 两个重要的极限
   一 证明limx→0sinxx=1
   二 证明limx→∞(1+1x)x=e
  §5 无穷小量与无穷大量
   一 无穷小量
   二 无穷小量阶的比较
   三 无穷大量
   四 曲线的渐近线
 第四章 函数的连续性
  §1 连续性概念
   一 函数在一点的连续性
   二 间断点及其分类
   三 区间上的连续函数
  §2 连续函数的性质
   一 连续函数的局部性质
   二 闭区间上连续函数的基本性质
   三 反函数的连续性
   四 一致连续性
  §3 初等函数的连续性
   一 指数函数的连续性
   二 初等函数的连续性
 第五章 导数和微分
  §1 导数的概念
   一 导数的定义
   二 导函数
   三 导数的几何意义
  §2 求导法则
   一 导数的四则运算
   二 反函数的导数
   三 复合函数的导数
   四 基本求导法则与公式
  §3 参变量函数的导数
  §4 高阶导数
  §5 微分
   一 微分的概念
   二 微分的运算法则
   三 高阶微分
   四 微分在近似计算中的应用
 第六章 微分中值定理及其应用
  §1 拉格朗日定理和函数的单调性
   一 罗尔定理与拉格朗日定理
   二 单调函数
  §2 柯西中值定理和不定式极限
   一 柯西中值定理
   二 不定式极限
  §3 泰勒公式
   一 带有佩亚诺型余项的泰勒公式
   二 带有拉格朗日型余项的泰勒公式
   三 在近似计算上的应用
  §4 函数的极值与最大(小)值
   一 极值判别
   二 最大值与最小值
  §5 函数的凸性与拐点
  §6 函数图象的讨论
  *§7 方程的近似解
 第七章 实数的完备性
  §1 关于实数集完备性的基本定理
   一 区间套定理与柯西收敛准则
   二 聚点定理与有限覆盖定理
   *三 实数完备性基本定理的等价性
  *§2 上极限和下极限
 第八章 不定积分
  §1 不定积分概念与基本积分公式
   一 原函数与不定积分
   二 基本积分表
  §2 换元积分法与分部积分法
   一 换元积分法
   二 分部积分法
  §3 有理函数和可化为有理函数的不定积分
   一 有理函数的不定积分
   二 三角函数有理式的不定积分
   三 某些无理根式的不定积分
 第九章 定积分
  §1 定积分概念
   一 问题提出
   二 定积分的定义
  §2 牛顿—莱布尼茨公式
  §3 可积条件
   一 可积的必要条件
   二 可积的充要条件
   三 可积函数类
  §4 定积分的性质
   一 定积分的基本性质
   二 积分中值定理
  §5 微积分学基本定理·定积分计算(续)
   一 变限积分与原函数的存在性
   二 换元积分法与分部积分法
   三 泰勒公式的积分型余项
  *§6 可积性理论补叙
   一 上和与下和的性质
   二 可积的充要条件
 第十章 定积分的应用
  §1 平面图形的面积
  §2 由平行截面面积求体积
  §3 平面曲线的弧长与曲率
   一 平面曲线的弧长
   二 曲率
  §4 旋转曲面的面积
   一 微元法
   二 旋转曲面的面积
  §5 定积分在物理中的某些应用
   一 液体静压力
   二 引力
   三 功与平均功率
  *§6 定积分的近似计算
   一 梯形法
   二 抛物线法
 第十一章 反常积分
  §1 反常积分概念
   一 问题提出
   二 两类反常积分的定义
  §2 无穷积分的性质与收敛判别
   一 无穷积分的性质
   二 非负函数无穷积分的收敛判别法
   三 一般无穷积分的收敛判别法
  §3 瑕积分的性质与收敛判别
 附录Ⅰ 微积分学简史
 附录Ⅱ 实数理论
  一 建立实数的原则
  二 分析
  三 分划全体所成的有序集
  四 R中的加法
  五 R中的乘法
  六 R作为Q的扩充
  七 实数的无限小数表示
  八 无限小数四则运算的定义
 附录Ⅲ 积分表
  一 含有xn的形式
  二 含有a+bx的形式
  三 含有a2±x2,a>0的形式
  四 含有a+bx+cx2,b2≠4ac的形式
  五 含有a+bx的形式
  六 含有x2±a2,a>0的形式
  七 含有a2-x2,a>0的形式
  八 含有sinx或cosx的形式
  九 含有tanx,cotx,secx,cscx的形式
  十 含有反三角函数的形式
  十一 含有ex的形式
  十二 含有lnx的形式
 习题答案
 索引
 人名索引