现代无机材料组成与结构表征
作者: 编写组
出版时间:2007-01
出版社:高等教育出版社
- 高等教育出版社
- 9787040199468
- 1版
- 67103
- 46253232-6
- 平装
- 异16开
- 2007-01
- 630
- 496
- 工学
- 材料科学与工程
- 材料类
- 研究生及以上
本书是以中国科学院上海硅酸盐研究所使用多年的研究生教材为基础编写的。全书共有八章,内容包括:原子吸收及发射光谱分析、X射线荧光光谱分析、辉光放电质谱分析、热分析、X射线衍射分析、透射电子显微分析、扫描俄歇电子能谱分析以及电子探针、扫描电镜显微分析等。书中系统地介绍了常用大型仪器的特点、结构、原理、分析方法的理论基础、最新实验技术及在材料研究中的应用。作者将数十年对先进陶瓷材料的研究结果和分析经验以应用实例的方式介绍给读者,具有较强的参考价值。
本书可供材料及相关学科的研究生、大学本科生及广大的科技人员参考。
第1章 原子吸收及发射光谱分析
§1.1 原子吸收光谱法(AAS)
§1.1.1 火焰原子吸收光谱法(FAAS)
§1.1.2 石墨炉原子吸收光谱法(GFAAS)
§1.2 电感耦合等离子体发射光谱法(ICP OES)
§1.2.1 ICP OES仪器基本结构
§1.2.2 ICP OES的特点
§1.2.3 ICP炬焰的形成
§1.2.4 ICP的装置和炬焰结构
§1.2.5 ICP激发机理
§1.2.6 ICP光源的分析特性
§1.2.7 高频电源
§1.2.8 进样装置
§1.2.9 ICP炬管
§1.2.10 ICP OES光学系统和检测系统
§1.2.11 ICP OES的干扰和干扰消除
§1.2.12 样品分析技术
§1.3 FAAS、GFAAS和ICP OES性能比较
参考文献
第2章 X射线荧光光谱分析
§2.1 引言
§2.2 X射线的物理学基础
§2.2.1 X射线荧光的产生
§2.2.2 X射线与物质的相互作用
§2.2.3 X射线荧光的激发因子
§2.3 X射线荧光谱仪
§2.3.1 波长色散X射线荧光光谱仪
§2.3.2 能量色散X射线荧光光谱仪
§2.3.3 全反射X射线荧光光谱仪(TXRF)
§2.4 定性和半定量分析
§2.4.1 概述
§2.4.2 定性分析
§2.4.3 半定量分析
§2.4.4 实际样品半定量分析结果举例
§2.5 定量分析
§2.5.1 XRF的定量分析基础
§2.5.2 元素间的吸收增强效应
§2.5.3 克服或校正元素间吸收增强效应的方法概述
§2.5.4 经验影响系数法
§2.5.5 基本参数法
§2.5.6 理论影响系数法
§2.5.7 小结
§2.6 样品制备
§2.6.1 概述
§2.6.2 固体样品的制备
§2.6.3 粉末样品及粉末压片的制备
§2.6.4 熔融样品的制备
§2.6.5 薄样的制备
§2.7 应用实例
§2.7.1 镍基、铁基和钴基合金的定量分析
§2.7.2 地质样品中多元素分析
§2.7.3 PZNT晶体主量元素含量分析
参考文献
第3章 辉光放电质谱分析
§3.1 引言
§3.2 辉光放电基本原理
§3.2.1 辉光放电
§3.2.2 辉光放电的溅射和电离
§3.2.3 辉光放电质谱
§3.3 仪器
§3.3.1 离子源
§3.3.2 质量分析器
§3.3.3 检测系统
§3.4 辉光放电质谱分析及其特点
§3.4.1 样品制备与预处理
§3.4.2 分析参数的选择与分析过程
§3.4.3 半定量和定量分析
§3.4.4 分析特点和性能比较
§3.5 应用
§3.5.1 金属及半导体材料分析
§3.5.2 非导体材料分析
§3.5.3 深度分析
参考文献
第4章 热分析
§4.1 热分析的定义
§4.2 热分析的物理基础
§4.2.1 基本概念和基本定律
§4.2.2 热力学基本定律
§4.3 物质受热过程中发生的变化
§4.3.1 热物理性质变化
§4.3.2 热量传递的一般规律
§4.4 热分析方法
§4.4.1 热重法
§4.4.2 差热分析法
§4.4.3 差示扫描量热法
参考文献
第5章 X射线衍射分析
§5.1 X射线在晶体中的衍射
§5.1.1 晶体的X射线衍射和布拉格定律
§5.1.2 衍射线的强度
§5.1.3 倒易点阵
§5.1.4 倒易点阵和晶体的衍射方向
§5.2 X射线物相分析
§5.2.1 物相的定性分析
§5.2.2 物相的定量分析
§5.3 衍射图谱的指标化和晶胞参数的精确测定
§5.3.1 衍射图谱的指标化和晶胞参数精确测定的意义
§5.3.2 衍射数据指标化和晶胞参数精确测定的方法
§5.3.3 用标准样对比消除误差的方法
§5.3.4 未知相衍射线的指标化
§5.3.5 X射线衍射线条的指标化和晶胞参数的精密测定(已知近似晶胞参数)
§5.3.6 晶胞中分子数的求算
§5.3.7 衍射数据指标化的可靠性评价
§5.4 Rietveld方法及其在结构分析、定量相分析中的应用
§5.4.1 粉末衍射法结构解析的困难和全谱拟合结构精修思想(Rietveld方法)的提出
§5.4.2 全谱拟合的理论要点
§5.4.3 利用Rietveld方法进行结构分析的实例
§5.4.4 利用Rietveld方法进行定量相分析的实例
参考文献
第6章 透射电子显微分析
§6.1 引言——电子显微学发展简介
§6.2 透射电子显微镜构成与功能
§6.2.1 电镜的主要部件和种类
§6.2.2 聚光系统与电镜模式的选择
§6.2.3 电子枪
§6.2.4 磁透镜
§6.2.5 球差、物镜光阑与点分辨率
§6.2.6 像散与高分辨像
§6.2.7 中间镜、物镜光阑和选区光阑
§6.3 电子衍射图
§6.3.1 单原子散射、非相干散射
§6.3.2 相干散射——衍射效应
§6.3.3 Ewald球与电子衍射图
§6.3.4 主要晶体类型与典型电子衍射图
§6.3.5 多晶衍射环和晶格参数确定
§6.4 晶格缺陷的观察——衍射衬度成像
§6.4.1 双束条件与布洛赫(Bloch)波
§6.4.2 衍射矢量
§6.4.3 消光距离、等厚条纹和等倾轮廓
§6.4.4 层错的条纹衬度与类型识别
§6.4.5 位错消光与伯格斯矢量
§6.4.6 位错分解与部分位错
§6.4.7 弱束像与位错芯
§6.5 原子结构观察——高分辨像
§6.5.1 多束相位衬度
§6.5.2 晶格条纹像与Moiré条纹像
§6.5.3 衬度传递函数Scherzer聚焦
§6.5.4 高分辨晶格像的模拟计算
§6.5.5 像散与信息极限
§6.6 分析电子显微学AEM简介
§6.6.1 分析电镜的信号
§6.6.2 STEM成像与探头
§6.6.3 Z衬度像
§6.6.4 电子能量损失谱EELS
§6.6.5 空间分辨率
§6.6.6 会聚束电子衍射CBED
§6.7 薄样品X射线能谱分析EDS
§6.7.1 特征X射线激发
§6.7.2 能谱与波谱
§6.7.3 k因子与成分定量分析
参考文献
第7章 扫描俄歇电子能谱分析
§7.1 引言
§7.2 俄歇电子能谱分析的基本原理
§7.2.1 俄歇过程和俄歇电子
§7.2.2 俄歇过程的符号标识与过程的分类
§7.2.3 原子的终态能量和俄歇谱线
§7.2.4 俄歇电子的动能和经验计算公式
§7.2.5 俄歇电子动能峰的强度
§7.3 仪器的基本构造和功能
§7.3.1 电子枪和离子枪
§7.3.2 电子能量分析器和探测器
§7.3.3 超高真空(UHV)系统
§7.4 样品与样品制备
§7.4.1 样品的清洁、大小和其他要求
§7.4.2 样品制备方法
§7.5 俄歇电子能谱分析方法
§7.5.1 定性分析与半定量分析
§7.5.2 多点分析和俄歇电子分布分析
§7.5.3 元素沿样品深度方向分布的分析
§7.6 某些应用实例
§7.6.1 纳米粉体表面包裹层的分析
§7.6.2 某种结构陶瓷的定性和化学状态分析
§7.6.3 某种结构陶瓷的成分像
§7.6.4 某种αSialon陶瓷的半定量分析
§7.6.5 某些材料的元素随深度分布的分析
参考文献
第8章 电子探针、扫描电镜显微分析
§8.1 引言
§8.1.1 概述
§8.1.2 电子与固体试样的交互作用
§8.2 电子探针显微分析
§8.2.1 电子探针的发展
§8.2.2 电子探针显微分析的特点
§8.2.3 电子探针分析的基本原理
§8.2.4 仪器构造
§8.2.5 试样要求及试样制备方法
§8.2.6 分析方法
§8.2.7 定性和定量分析方法
§8.2.8 实验条件的选择
§8.2.9 数据分析
§8.3 扫描电子显微镜
§8.3.1 SEM的主要特点
§8.3.2 SEM的仪器构造及成像原理
§8.3.3 场发射SEM及低真空SEM
§8.3.4 SEM工作条件与图像质量的关系
§8.4 电子探针、扫描电镜在材料研究中的应用
§8.4.1 陶瓷自然表面及抛光面显微结构
§8.4.2 断口分析
§8.4.3 双重结构的特征
§8.4.4 粉体形貌
§8.4.5 生长台阶与晶面消失
§8.4.6 纤维增强复合材料及金属陶瓷复合材料
§8.4.7 耐火材料的显微结构
§8.4.8 纳米材料、介孔材料形貌特征
§8.4.9 成分定性和定量分析
§8.4.10 扩散和离子交换研究
§8.4.11 状态分析
§8.4.12 玻璃的显微结构
§8.4.13 高温超导体的显微结构
§8.4.14 相图测定
§8.4.15 微区结构分析
§8.4.16 考古
§8.4.17 失效分析
§8.4.18 图像分析与图像处理
§8.4.19 固体中的离子迁移研究
参考文献
CONTENTS
Chapter 1 Atomic Absorption Spectrometry and Emission Spectrometry
§1.1 Atomic absorption spectrometry(AAS)
§1.1.1 Flame atomic absorption spectrometry(FAAS)
§1.1.2 Graphite furnace atomic absorption spectrometry(GFAAS)
§1.2 Inductively coupled plasma optical emission spectrometry(ICP-OES)
§1.2.1 Basic instrument construction of ICP-OES
§1.2.2 Characteristics of ICP-OES
§1.2.3 Generation of plasma torch in ICP-OES
§1.2.4 ICP equipment and structure of plasma torch
§1.2.5 Mechanism of excitation in ICP
§1.2.6 Characteristics of analysis for plasma torch
§1.2.7 Radio frequency(RF)generator
§1.2.8 Sampling equipments
§1.2.9 ICP torch
§1.2.10 Optical system and detection system of ICP-OES
§1.2.11 Interferences and elimination interferences in ICP-OES
§1.2.12 Techniques of sample analysis
§1.3 Comparisons of characteristics among FAAS,GFAAS and ICP-OES
References
Chapter 2 X-ray Fluorescence Spectrometry
§2.1 Introduction
§2.2 Basic X-ray physics
§2.2.1 Generation of X-ray
§2.2.2 Inter action between X-ray and maters
§2.2.3 Excitation factor of fluorescent X-ray
§2.3 X-ray spectrometers
§2.3.1 Wavelength dispersive X-ray fluorescence spectrometer
§2.3.2 Energy dispersive X-ray fluorescence spectrometer
§2.3.3 Total reflection X-ray fluorescence spectrometer
§2.4 Qualitative and semi-quantitative analysis
§2.4.1 General
§2.4.2 Qualitative analysis
§2.4.3 Semi-quantitative analysis
§2.4.4 Example results of application for semi-quantitative analysis
§2.5 Quantitative analysis
§2.5.1 Basic for X-ray quantitative fluorescence analysis
§2.5.2 Inter-element absorption-enhancement effect
§2.5.3 Outline of methods for inter-element absorption-enhancement effect elimination or correction
§2.5.4 Empirical influence coefficient method
§2.5.5 Fundamental parameter method
§2.5.6 Theoretical influence coefficient method
§2.5.7 Summary
§2.6 Sample preparation
§2.6.1 General
§2.6.2 Preparation for solid samples
§2.6.3 Preparation for powder and powder pellets
§2.6.4 Preparation for fusion beads
§2.6.5 Preparation for thin film samples
§2.7 Examples of application
§2.7.1 Quantitative analysis of nickel,iron and cobalt based alloys
§2.7.2 Multi-element analysis of geological samples
§2.7.3 Major component analysis for PZNT crystals
References
Chapter 3 Glow Discharge Mass Spectrometry
§3.1 Introduction
§3.2 Basic principles in glow discharge
§3.2.1 Glow discharge
§3.3.2 Sputtering and ionization in glow discharge
§3.3.3 Glow discharge mass spectrometry
§3.3 Instrumentation
§3.3.1 Ion source
§3.3.2 Mass analyser
§3.3.3 Detector system
§3.4 Glow discharge mass spectrometry analysis
§3.4.1 Sample preparation and pretreatment
§3.4.2 Parameters selection
§3.4.3 Semi-quantitative and quantitative analysis
§3.4.4 Characteristics and capability of GDMS
§3.5 Analytical applications
§3.5.1 Metals and semiconductors analysis
§3.5.2 Insulate materials analysis
§3.5.3 Depth profiling
References
Chaper 4 Thermal Analysis
§4.1 The definition on thermal analysis
§4.2 The physical base on thermal analysis
§4.2.1 The basic concepts and the basic laws
§4.2.2 The basic laws on thermodynamics
§4.3 The changes on the thermal processes of materials
§4.3.1 The changes on thermal properties
§4.3.2 The normal rules for the transfer of quantity of heat
§4.4 Thermal analysis methods
§4.4.1 Thermogravimetry,TG
§4.4.2 Differential thermal analysis,DTA
§4.4.3 Differential scanning calorimetry,DSC
References
Chapter 5 X-ray Diffraction Analysis
§5.1 Diffraction of X-ray in crystal
§5.1.1 X-ray diffraction of crystal and Bragg law
§5.1.2 Intensity of diffraction peak
§5.1.3 Reciprocal lattice
§5.1.4 Reciprocal lattice and diffraction direction of crystal
§5.2 Phase identification of X-ray
§5.2.1 Qualitative phase identification
§5.2.2 Quantitative analysis of phase identification
§5.3 Indexing of XRD pattern and accurate determination of lattice parameters
§5.3.1 Significance of indexing of XRD pattern and accurate determination of lattice parameters
§5.3.2 Method of indexing of XRD pattern and accurate determination of lattice parameters
§5.3.3 Method to eliminate error by comparison of standard specimen
§5.3.4 Indexing of XRD pattern of unknown phase
§5.3.5 Indexing of XRD pattern and accurate determination of lattice parameters(lattice parameters are approximately known)
§5.3.6 Calculation of number of molecule in one unit cell
§5.3.7 A criterion of the reliability of a powder pattern indexing
§5.4 Rietveld method and its application in structural analysis and quantitative analysis of phase identification
§5.4.1 Difficulty of structural determination by powder diffraction and the pattern-fitting and structure-refinement method(Rietveld method)
§5.4.2 Theoretical points of the pattern-fitting and structure-refinement method
§5.4.3 Examples of use of Rietveld method for structural analysis
§5.4.4 Examples of use of Rietveld method for quantitative phase identification
References
Chapter 6 Transmission Electron Microscopy Analysis
§6.1 Introduction-development of electron microscopy
§6.2 Components and functions of transmission electron microscope
§6.2.1 Components and variety of transmission electron microscope
§6.2.2 Condenser system and TEM mode selection
§6.2.3 Electron gun
§6.2.4 Magnetic lens
§6.2.5 Spherical aberration,objective aperture and point-to-point resolution
§6.2.6 Astigmatism and high resolution image
§6.2.7 Intermediate lens,objective aperture and select area aperture
§6.3 Electron diffraction pattern
§6.3.1 Single atom scattering and incoherent scattering
§6.3.2 Coherent scattering-diffraction effect
§6.3.3 Ewald sphere and electron diffraction pattern
§6.3.4 Main types of crystal and typical electron diffraction patterns
§6.3.5 Polycrystal diffraction ring and lattice parameters confirmation
§6.4 Observation of lattice defect-image of diffraction contrast
§6.4.1 Two-beam condition and Bloch wave
§6.4.2 Diffraction vector
§6.4.3 Extinction distance,equal thick fringes and equal inclination fringes
§6.4.4 Contrast and type identification of stacking fault
§6.4.5 Dislocation extinction and Burger’s vector
§6.4.6 Dislocation dissociation and partial dislocation
§6.4.7 Weak beam image and dislocation core
§6.5 Observation of atom structure-high resolution image
§6.5.1 Multi-beam phase contrast
§6.5.2 Lattice fringes image and Moiré fringes image
§6.5.3 Contrast transfer function and Scherzer defocus
§6.5.4 Analogy calculation of high resolution lattice imaging
§6.5.5 Astigmatism and information limit
§6.6 Introduction of analytical electron microscopy(AEM)
§6.6.1 Signals of scanning transmission electron microscope(STEM)
§6.6.2 Imaging and detectors of STEM
§6.6.3 Z contrast image
§6.6.4 Electron energy-loss spectrometry(EELS)
§6.6.5 Spatial resolution
§6.6.6 Convergent beam electron diffraction(CBED)
§6.7 X-ray energy-dispersive spectrometry(EDS)analysis of thin specimen
§6.7.1 Excitation of characteristic X-ray
§6.7.2 X-ray energy-dispersive spectrometry and wavelength-dispersive spectrometry
§6.7.3 k factor and qualitative analysis
References
Chapter 7 Scanning Auger Electron Spectroscopy
§7.1 Introduction
§7.2 Basic principles in AES
§7.2.1 Auger transitions and Auger electrons
§7.2.2 Denotation and classification of Auger process
§7.2.3 Atomic final state energy and Auger lines
§7.2.4 Empirical calculation of Auger electron kinetic energy
§7.2.5 Intensity of Auger peaks
§7.3 Typical apparatus and their functions
§7.3.1 Electron gun and ion gun
§7.3.2 Energy analyzer and detector
§7.3.3 Ultra-high vacuum system
§7.4 Samples and sample handling
§7.4.1 Cleanliness,size and some other requirements for samples
§7.4.2 Methods of sample preparation and mounting
§7.5 Analysis technics in AES
§7.5.1 Qualitative and semi-quantitative analysis
§7.5.2 Multipoint spectrum acquicition and Auger electron imaging
§7.5.3 Sputter depth profilling
§7.6 Applications of AES to high performance ceramic materials
§7.6.1 Spectra analysis of adsorptive layer on the nanometer powder surface
§7.6.2 Identification and chemical state analysis in a structureal ceramic material
§7.6.3 Auger electron imaging in a structural ceramic materal
§7.6.4 Semi-quantitative analysis inαsilicon ceramic material
§7.6.5 Depth profiling in some ceramic materials
References
Chapter 8 EPMA/SEM Microanalysis
§8.1 Introduction
§8.1.1 Summary
§8.1.2 Interaction between electron beam and specimen
§8.2 Electron probe microanalysis
§8.2.1 Development of EPMA
§8.2.2 The characteristic of electron probe microanalysis
§8.2.3 Basic principles of EPMA analysis
§8.2.4 Constitution of apparatus
§8.2.5 Specimen requirement and specimen preparation
§8.2.6 Method for analysis
§8.2.7 Qualitative and quantitative analysis
§8.2.8 Selection of analysis conditions
§8.2.9 Data analysis
§8.3 Scanning electron microscope
§8.3.1 The characteristic of SEM
§8.3.2 Constitution and principle of SEM apparatus
§8.3.3 Field emission scanning electron microscope and low vacuum scanning electron microscope
§8.3.4 Relationship between analysis conditions and image quality
§8.4 Applications of EPMA/SEM on material study
§8.4.1 Microstructure of ceramic surface and polishing surface
§8.4.2 Fracture analysis
§8.4.3 Observation of the duplex microstructure
§8.4.4 Observation of powder morphologies
§8.4.5 Growth steps and disappearance of crystal planes
§8.4.6 Investigation on fibre composites
§8.4.7 Microstructure of refractories
§8.4.8 Microstructure of carbon nano-tubes
§8.4.9 Qualitative and quantitative analysis
§8.4.10 Study of ion migration and diffusion
§8.4.11 State analysis
§8.4.12 Microstructure of glasses
§8.4.13 Microstructure of high temperature superconductor
§8.4.14 Determination phase diagram
§8.4.15 Structure analysis of microdomain
§8.4.16 Archeological study
§8.4.17 Failure analysis
§8.4.18 Image analysis and processing
§8.4.19 Investigation on ion migration in solids
References